77 research outputs found

    Computational Mesoscale Framework for Biological Clustering and Fractal Aggregation

    Get PDF
    Hierarchical clustering due to diffusion and reaction is a widespread occurrence in natural phenomena, displaying fractal behavior with non-integer size scaling. The study of this phenomenon has garnered interest in both biological systems such as morphogenesis and blood clotting, and synthetic systems such as colloids and polymers. The modeling of biological clustering can be difficult, as it can occur on a variety of scales and involve multiple mechanisms, necessitating the use of various methods to capture its behavior. Here, we propose a novel framework, the generalized-mesoscale-clustering (GMC), for the study of complex hierarchical clustering phenomena in biological systems. The GMC framework incorporates the effects of hydrodynamic interactions, bonding, and surface tension, and allows for the analysis of both static and dynamic states of cluster development. The framework is applied to a range of biological clustering mechanisms, with a focus on blood-related clustering from fibrin network formation to platelet aggregation. Our study highlights the importance of a comprehensive characterization of the structural properties of the cluster, including fractal dimension, pore-scale diffusion, initiation time, and consolidation time, in fully understanding the behavior of biological clustering systems. The GMC framework also provides the potential to investigate the temporal evolution and mechanical properties of the clusters by tracking bond density and including hydrodynamic interactions

    Computational modeling of passive transport of functionalized nanoparticles

    Get PDF
    Functionalized nanoparticles (NPs) are complex objects present in a variety of systems ranging from synthetic grafted nanoparticles to viruses. The morphology and number of the decorating groups can vary widely between systems. Thus, the modeling of functionalized NPs typically considers simplified spherical objects as a first-order approximation. At the nanoscale label, complex hydrodynamic interactions are expected to emerge as the morphological features of the particles change, and they can be further amplified when the NPs are confined or near walls. Direct estimation of these variations can be inferred via diffusion coefficients of the NPs. However, the evaluation of the coefficients requires an improved representation of the NPs morphology to reproduce important features hidden by simplified spherical models. Here, we characterize the passive transport of free and confined functionalized nanoparticles using the Rigid Multi-Blob (RMB) method. The main advantage of RMB is its versatility to approximate the mobility of complex structures at the nanoscale with significant accuracy and reduced computational cost. In particular, we investigate the effect of functional groups' distribution, size, and morphology over nanoparticle translational and rotational diffusion. We identify that the presence of functional groups significantly affects the rotational diffusion of the nanoparticles; moreover, the morphology of the groups and number induce characteristic mobility reduction compared to non-functionalized nanoparticles. Confined NPs also evidenced important alterations in their diffusivity, with distinctive signatures in the off-diagonal contributions of the rotational diffusion. These results can be exploited in various applications, including biomedical, polymer nanocomposite fabrication, drug delivery, and imaging

    Simulation of Individual Polymer Chains and Polymer Solutions with Smoothed Dissipative Particle Dynamics

    Get PDF
    In an earlier work (Litvinov et al., Phys.Rev.E 77, 066703 (2008)), a model for a polymer molecule in solution based on the smoothed dissipative particle dynamics method (SDPD) has been presented. In the present paper, we show that the model can be extended to three-dimensional situations and simulate effectively diluted and concentrated polymer solutions. For an isolated suspended polymer, calculated static and dynamic properties agree well with previous numerical studies and theoretical predictions based on the Zimm model. This implies that hydrodynamic interactions are fully developed and correctly reproduced under the current simulated conditions. Simulations of polymer solutions and melts are also performed using a reverse Poiseuille flow setup. The resulting steady rheological properties (viscosity, normal stress coefficients) are extracted from the simulations and the results are compared with the previous numerical studies, showing good results

    Exact pressure evolution equation for incompressible fluids

    Full text link
    An important aspect of computational fluid dynamics is related to the determination of the fluid pressure in isothermal incompressible fluids. In particular this concerns the construction of an exact evolution equation for the fluid pressure which replaces the Poisson equation and yields an algorithm which is a Poisson solver, i.e., it permits to time-advance exactly the same fluid pressure \textit{without solving the Poisson equation}% . In fact, the incompressible Navier-Stokes equations represent a mixture of hyperbolic and elliptic pde's, which are extremely hard to study both analytically and numerically. In this paper we intend to show that an exact solution to this problem can be achieved adopting the approach based on inverse kinetic theory (IKT) recently developed for incompressible fluids by Ellero and Tessarotto (2004-2007). In particular we intend to prove that the evolution of the fluid fields can be achieved by means of a suitable dynamical system, to be identified with the so-called Navier-Stokes (N-S) dynamical system. As a consequence it is found that the fluid pressure obeys a well-defined evolution equation. The result appears relevant for the construction of Lagrangian approaches to fluid dynamics.Comment: Contributed paper at RGD26 (Kyoto, Japan, July 2008

    Study on NGF and VEGF during the Equine Perinatal Periodā€”Part 2: Foals Affected by Neonatal Encephalopathy

    Get PDF
    Simple Summary Based on human medicine, Neonatal Encephalopathy is the term used by equine clinicians for newborn foals which develop a variety of non-infectious neurological signs in the immediate postpartum period. It has become the preferred term because it does not imply a specific underlying etiology or pathophysiology, as hypoxia and ischemia may not be recognized in all cases. Understanding the underlying pathophysiology is important in formulating a rational approach to diagnosis. Our aim is to clinically characterize a population of foals spontaneously affected by Neonatal Encephalopathy and to evaluate the levels of trophic factors, such as nerve growth factor and vascular epithelial growth factor, and thyroid hormones obtained at birth/admission from a population of affected foals and in the first 72 h of life/hospitalization, as well as the expression of trophic factors in the placenta of mares that delivered foals affected by Neonatal Encephalopathy. The less pronounced decrease of the two trophic factors compared to healthy foals, their close relationship with thyroid hormones over time, and the dysregulation of trophic factor expression in placental tissues, could be key regulators in the mechanisms of equine Neonatal Encephalopathy. Neonatal Encephalopathy (NE) may be caused by hypoxic ischemic insults or inflammatory insults and modified by innate protective or excitatory mechanisms. Understanding the underlying pathophysiology is important in formulating a rational approach to diagnosis. The preliminary aim was to clinically characterize a population of foals spontaneously affected by NE. The study aimed to: (i) evaluate nerve growth factor (NGF) and vascular endothelial growth factor (VEGF) levels in plasma samples obtained in the affected population at parturition from the mare's jugular vein, umbilical cord vein and foal's jugular vein, as well as in amniotic fluid; (ii) evaluate the NGF and VEGF content in the plasma of foals affected by NE during the first 72 h of life/hospitalization; (iii) evaluate NGF and VEGF levels at birth/admission in relation to selected mare's and foal's clinical parameters; (iv) evaluate the relationship between the two trophic factors and thyroid hormone levels (TT3 and TT4) in the first 72 h of life/hospitalization; and (v) assess the mRNA expression of NGF, VEGF and brain-derived neurotrophic factor (BDNF), and their cell surface receptors, in the placenta of mares that delivered foals affected by NE. Thirteen affected foals born from mares hospitalized for peripartum monitoring (group NE) and twenty affected foals hospitalized after birth (group exNE) were included in the study. Dosage of NGF and VEGF levels was performed using commercial ELISA kits, whereas NGF, VEGF, and BDNF placental gene expression was performed using a semi-quantitative real-time PCR. In group NE, NGF levels decreased significantly from T0 to T24 (p = 0.0447) and VEGF levels decreased significantly from T0 to T72 (p = 0.0234), whereas in group exNE, only NGF levels decreased significantly from T0 to T24 (p = 0.0304). Compared to healthy foals, a significant reduction of TT3 levels was observed in both NE (T24, p = 0.0066; T72 p = 0.0003) and exNE (T0, p = 0.0082; T24, p < 0.0001; T72, p < 0.0001) groups, whereas a significant reduction of TT4 levels was observed only in exNE group (T0, p = 0.0003; T24, p = 0.0010; T72, p = 0.0110). In group NE, NGF levels were positively correlated with both TT3 (p = 0.0475; r = 0.3424) and TT4 levels (p = 0.0063; r = 0.4589).In the placenta, a reduced expression of NGF in the allantois (p = 0.0033) and a reduced expression of BDNF in the amnion (p = 0.0498) were observed. The less pronounced decrease of the two trophic factors compared to healthy foals, their relationship with thyroid hormones over time, and the reduced expression of NGF and BDNF in placental tissues of mares that delivered affected foals, could be key regulators in the mechanisms of equine NE

    Hair Cortisol and DHEA-S in Foals and Mares as a Retrospective Picture of Feto-Maternal Relationship under Physiological and Pathological Conditions

    Get PDF
    Equine fetal hair starts to grow at around 270 days of pregnancy, and hair collected at birth reflects hormones of the last third of pregnancy. The study aimed to evaluate cortisol (CORT) and dehydroepiandrosterone-sulfate (DHEA-S) concentrations and their ratio in the trichological matrix of foals and mares in relation to their clinical parameters; the clinical condition of the neonate (study 1); the housing place at parturition (study 2). In study 1, 107 mare-foal pairs were divided into healthy (group H; n = 56) and sick (group S; n = 51) foals, whereas in study 2, group H was divided into hospital (n = 30) and breeding farm (n = 26) parturition. Steroids from hair were measured using a solid-phase microtiter radioimmunoassay. In study 1, hair CORT concentrations measured in foals did not differ between groups and did not appear to be influenced by clinical parameters. A correlation between foal and mare hair CORT concentrations (p = 0.019; r = 0.312, group H; p = 0.006; r = 0.349, group S) and between CORT and DHEA-S concentrations in foals (p = 0.018; r = 0.282, group H; p < 0.001; r = 0.44, group S) and mares (p = 0.006; r = 0.361, group H; p = 0.027; r = 0.271, group S) exists in both groups. Increased hair DHEA-S concentrations (p = 0.033) and decreased CORT/DHEA-S ratio (p < 0.001) appear to be potential biomarkers of chronic stress in the final third of pregnancy, as well as a potential sign of resilience and allostatic load in sick foals, and deserve further attention in the evaluation of prenatal hypothalamus-pituitary-adrenal (HPA) axis activity in the equine species. In study 2, hormone concentrations in the hair of mares hospitalized for attended parturition did not differ from those that were foaled at the breeding farm. This result could be related to a too brief period of hospitalization to cause significant changes in steroid deposition in the mareā€™s hair

    Study on NGF and VEGF during the Equine Perinatal Periodā€”Part 1: Healthy Foals Born from Normal Pregnancy and Parturition

    Get PDF
    The importance of trophic factors, such as nerve growth factor (NGF), vascular endothelial growth factor (VEGF), and brain-derived neurotrophic factor (BDNF) during the perinatal period, is now emerging. Through their functional activities of neurogenesis and angiogenesis, they play a key role in the final maturation of the nervous and vascular systems. The present study aims to: (i) evaluate the NGF and VEGF levels obtained at parturition from the mare, foal and umbilical cord vein plasma, as well as in amniotic fluid; (ii) evaluate NGF and VEGF content in the plasma of healthy foals during the first 72 h of life (T0, T24 and T72); (iii) evaluate NGF and VEGF levels at parturition in relation to the selected maresā€™ and foalsā€™ clinical parameters; (iv) evaluate the relationship between the two trophic factors and the thyroid hormone levels (TT3 and TT4) in the first 72 h of life; (v) assess mRNA expression of NGF, VEGF and BDNF and their cell surface receptors in the placenta. Fourteen Standardbred healthy foals born from mares with normal pregnancies and parturitions were included in the study. The dosage of NGF and VEGF levels was performed using commercial ELISA kits, whereas NGF, VEGF and BDNF placental gene expression was performed using semi-quantitative real-time PCR. In foal plasma, both NGF and VEGF levels decreased significantly over time, from T0 to T24 (p = 0.0066 for NGF; p < 0.0001 for VEGF) and from T0 to T72 (p = 0.0179 for NGF; p = 0.0016 for VEGF). In foal serum, TT3 levels increased significantly over time from T0 to T24 (p = 0.0058) and from T0 to T72 (p = 0.0013), whereas TT4 levels decreased significantly over time from T0 to T24 (p = 0.0201) and from T0 to T72 (p < 0.0001). A positive correlation was found in the levels of NGF and VEGF in foal plasma at each time point (p = 0.0115; r = 0.2862). A positive correlation was found between NGF levels in the foal plasma at T0 and lactate (p = 0.0359; r = 0.5634) as well as between VEGF levels in the foal plasma at T0 and creatine kinase (p = 0.0459; r = 0.5407). VEGF was expressed in all fetal membranes, whereas NGF and its receptors were not expressed in the amnion. The close relationship between the two trophic factors in foal plasma over time and their fine expression in placental tissues appear to be key regulators of fetal development and adaptation to extra-uterine life

    Prenatal tobacco smoke exposure increases hospitalizations for bronchiolitis in infants

    Get PDF
    BACKGROUND: Tobacco smoke exposure (TSE) is a worldwide health problem and it is considered a risk factor for pregnant women's and children's health, particularly for respiratory morbidity during the first year of life. Few significant birth cohort studies on the effect of prenatal TSE via passive and active maternal smoking on the development of severe bronchiolitis in early childhood have been carried out worldwide. METHODS: From November 2009 to December 2012, newborns born at ā‰„ 33 weeks of gestational age (wGA) were recruited in a longitudinal multi-center cohort study in Italy to investigate the effects of prenatal and postnatal TSE, among other risk factors, on bronchiolitis hospitalization and/or death during the first year of life. RESULTS: Two thousand two hundred ten newborns enrolled at birth were followed-up during their first year of life. Of these, 120 (5.4%) were hospitalized for bronchiolitis. No enrolled infants died during the study period. Prenatal passive TSE and maternal active smoking of more than 15 cigarettes/daily are associated to a significant increase of the risk of offspring children hospitalization for bronchiolitis, with an adjHR of 3.5 (CI 1.5-8.1) and of 1.7 (CI 1.1-2.6) respectively. CONCLUSIONS: These results confirm the detrimental effects of passive TSE and active heavy smoke during pregnancy for infants' respiratory health, since the exposure significantly increases the risk of hospitalization for bronchiolitis in the first year of lif

    Risk factors for bronchiolitis hospitalization during the first year of life in a multicenter Italian birth cohort

    Get PDF
    BACKGROUND: Respiratory Syncytial Virus (RSV) is one of the main causes of respiratory infections during the first year of life. Very premature infants may contract more severe diseases and 'late preterm infants' may also be more susceptible to the infection. The aim of this study is to evaluate the risk factors for hospitalization during the first year of life in children born at different gestational ages in Italy. METHODS: A cohort of 33-34 weeks gestational age (wGA) newborns matched by sex and age with two cohort of newborns born at 35-37 wGA andā€‰>ā€‰37 wGA were enrolled in this study for a three-year period (2009-2012). Hospitalization for bronchiolitis (ICD-9 code 466.1) during the first year of life was assessed through phone interview at the end of the RSV season (November-March) and at the completion of the first year of life. RESULTS: The study enrolled 2314 newborns, of which 2210 (95.5 %) had a one year follow-up and were included in the analysis; 120 (5.4 %) were hospitalized during the first year of life for bronchiolitis. Children born at 33-34 wGA had a higher hospitalization rate compared to the two other groups. The multivariate analysis carried out on the entire population associated the following factors with higher rates for bronchiolitis hospitalization: male gender; prenatal treatment with corticosteroids; prenatal exposure to maternal smoking; singleton delivery; respiratory diseases in neonatal period; surfactant therapy; lack of breastfeeding; siblings <10 years old; living in crowded conditions and/or in unhealthy households and early exposure to the epidemic RSV season. When analysis was restricted to preterms born at 33-34 wGA the following variables were associated to higher rates of bronchiolitis hospitalization: male gender, prenatal exposure to maternal smoking, neonatal surfactant therapy, having siblings <10 years old, living in crowded conditions and being exposed to epidemic season during the first three months of life. CONCLUSION: Our study identified some prenatal, perinatal and postnatal conditions proving to be relevant and independent risk factors for hospitalization for bronchiolitis during the first year of life. The combination of these factors may lead to consider palivizumab prophylaxis in Italy
    • ā€¦
    corecore