12 research outputs found

    Continuous AE monitoring of fresh concrete

    No full text
    The construction of cost-effective, high-strength and durable concrete structures is strongly based on the mix design and the early age assessment of its quality. Corrosion attack, spalling, shrinkage cracking or cracking due to freezing-thawing are only a few examples frequently seen in concrete elements as a result of their poor properties. The estimation of the mechanical and physical properties of the latter is, so far, either based on empirical methods, like the slump and V-funnel test, or on destructive tests, like the core sampling and the application of the Schmidt hammer, whfoh are also applied late on the structure. Therefore it is made clear that the only way to accomplish trust-worthy quality control as early as the moment of mixing is through non­ destructive testing techniques. Among them, Acoustic Emission (AE) is the most promising since it allows for the continuous monitoring of the material's behavior and the detailed evaluation of the emitted signals obtained from different experimental mix designs. In the current study, the aforementioned technique is used for the examination of the early age activity of specimens with various water to cement (w/c) and aggregate to cement (ale) ratios. It is found that using a setup which consists of metal molds and resonant sensors provides distinctive results among the specimens. Finally, throughout this work, it is suggested that AE parameters like the Average Frequency (AF) and the RA value can efficiently be used for quality characterization

    Serotonergic Modulation of Nociceptive Circuits in Spinal Cord Dorsal Horn

    No full text

    The Role of Descending Noradrenergic and Serotoninergic Pathways in the Modulation of Nociception: Focus on Receptor Multiplicity

    No full text

    International Nosocomial Infection Control Consortium report, data summary of 50 countries for 2010-2015: Device-associated module

    No full text
    ‱We report INICC device-associated module data of 50 countries from 2010-2015.‱We collected prospective data from 861,284 patients in 703 ICUs for 3,506,562 days.‱DA-HAI rates and bacterial resistance were higher in the INICC ICUs than in CDC-NHSN's.‱Device utilization ratio in the INICC ICUs was similar to CDC-NHSN's. Background: We report the results of International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2010-December 2015 in 703 intensive care units (ICUs) in Latin America, Europe, Eastern Mediterranean, Southeast Asia, and Western Pacific. Methods: During the 6-year study period, using Centers for Disease Control and Prevention National Healthcare Safety Network (CDC-NHSN) definitions for device-associated health care-associated infection (DA-HAI), we collected prospective data from 861,284 patients hospitalized in INICC hospital ICUs for an aggregate of 3,506,562 days. Results: Although device use in INICC ICUs was similar to that reported from CDC-NHSN ICUs, DA-HAI rates were higher in the INICC ICUs: in the INICC medical-surgical ICUs, the pooled rate of central line-associated bloodstream infection, 4.1 per 1,000 central line-days, was nearly 5-fold higher than the 0.8 per 1,000 central line-days reported from comparable US ICUs, the overall rate of ventilator-associated pneumonia was also higher, 13.1 versus 0.9 per 1,000 ventilator-days, as was the rate of catheter-associated urinary tract infection, 5.07 versus 1.7 per 1,000 catheter-days. From blood cultures samples, frequencies of resistance of Pseudomonas isolates to amikacin (29.87% vs 10%) and to imipenem (44.3% vs 26.1%), and of Klebsiella pneumoniae isolates to ceftazidime (73.2% vs 28.8%) and to imipenem (43.27% vs 12.8%) were also higher in the INICC ICUs compared with CDC-NHSN ICUs. Conclusions: Although DA-HAIs in INICC ICU patients continue to be higher than the rates reported in CDC-NSHN ICUs representing the developed world, we have observed a significant trend toward the reduction of DA-HAI rates in INICC ICUs as shown in each international report. It is INICC's main goal to continue facilitating education, training, and basic and cost-effective tools and resources, such as standardized forms and an online platform, to tackle this problem effectively and systematically

    Application of biodegradation in mitigating and remediating pesticide contamination of freshwater resources: state of the art and challenges for optimization

    No full text

    International Nosocomial Infection Control Consortiu (INICC) report, data summary of 43 countries for 2007-2012. Device-associated module

    No full text
    We report the results of an International Nosocomial Infection Control Consortium (INICC) surveillance study from January 2007-December 2012 in 503 intensive care units (ICUs) in Latin America, Asia, Africa, and Europe. During the 6-year study using the Centers for Disease Control and Prevention's (CDC) U.S. National Healthcare Safety Network (NHSN) definitions for device-associated health care–associated infection (DA-HAI), we collected prospective data from 605,310 patients hospitalized in the INICC's ICUs for an aggregate of 3,338,396 days. Although device utilization in the INICC's ICUs was similar to that reported from ICUs in the U.S. in the CDC's NHSN, rates of device-associated nosocomial infection were higher in the ICUs of the INICC hospitals: the pooled rate of central line–associated bloodstream infection in the INICC's ICUs, 4.9 per 1,000 central line days, is nearly 5-fold higher than the 0.9 per 1,000 central line days reported from comparable U.S. ICUs. The overall rate of ventilator-associated pneumonia was also higher (16.8 vs 1.1 per 1,000 ventilator days) as was the rate of catheter-associated urinary tract infection (5.5 vs 1.3 per 1,000 catheter days). Frequencies of resistance of Pseudomonas isolates to amikacin (42.8% vs 10%) and imipenem (42.4% vs 26.1%) and Klebsiella pneumoniae isolates to ceftazidime (71.2% vs 28.8%) and imipenem (19.6% vs 12.8%) were also higher in the INICC's ICUs compared with the ICUs of the CDC's NHSN
    corecore