26 research outputs found

    Diverse soil carbon dynamics expressed at the molecular level

    Get PDF
    The stability and potential vulnerability of soil organic matter (SOM) to global change remains incompletely understood due to the complex processes involved in its formation and turnover. Here we combine compound-specific radiocarbon analysis with fraction-specific and bulk-level radiocarbon measurements in order to further elucidate controls on SOM dynamics in a temperate and sub-alpine forested ecosystem. Radiocarbon contents of individual organic compounds isolated from the same soil interval generally exhibit greater variation than those among corresponding operationally-defined fractions. Notably, markedly older ages of long-chain plant leaf wax lipids (n-alkanoic acids) imply that they reflect a highly stable carbon pool. Furthermore, marked 14C variations among shorter- and longer-chain n-alkanoic acid homologues suggest that they track different SOM pools. Extremes in SOM dynamics thus manifest themselves within a single compound class. This exploratory study highlights the potential of compound-specific radiocarbon analysis for understanding SOM dynamics in ecosystems potentially vulnerable to global change

    Potencijalna upotreba izotopa važnih za okoliš u ispitivanju migracije onečišćujućih tvari

    Get PDF
    This article presents the use of natural abundance stable isotope (hydrogen, carbon, nitrogen, oxygen, chlorine) analysis data as a tool for providing important information about the origin of contaminants, the contribution of different sources to a multi-source plume, characterisation of their complex transport (rate and mechanisms) and for evaluating the success of contaminated site remediation. Isotopic signatures of contaminants are useful tracers of their sources, while isotopic fractionation can be used to quantitatively assess the progress of an environmental process such as biodegradation. This new isotopic approach is reliable and can offer more information than traditional techniques in pollutant migration studies, particularly after waste disposal. During biological degradation of any organic compound, molecules containing lighter isotopes are degraded, and the portion of heavier isotopes in the substrate is increased, identifying specific microbial roles in biogeochemical cycling. Since isotopic fractionation is proportional to degradation, depending on the type of contamination, a microbial degradation of 50 % to 99 % of the initial concentration can be quantified using isotope ratio measurements.Cilj ovog rada je da se prikaže korištenje podataka analize prirodne obilnosti stabilnih izotopa (vodika, ugljika, dušika, kisika i klora) kao alata za dobivanje važnih informacija o porijeklu onečišćujućih tvari, doprinosu različitih multikomponentnih onečišćivača, karakterizaciji njihova kompleksnog transporta (brzine i mehanizma) i praćenja uspjeha remedijacije onečišćenih mjesta. Izotopski sadržaji onečišćujućih tvari koriste se kao traseri za određivanje njihovih izvora, dok se izotopsko frakcioniranje može iskoristiti za kvantitativnu procjenu toka procesa kao što je biodegradacija. Takav nov izotopski pristup je pouzdan i nudi više informacija od tradicionalnih tehnika kontrole putovanja onečišćivala, napose nakon odlaganja opasnog otpada na zemljištu. Za vrijeme biodegradacije nekog organskog spoje molekule koje sadržavaju lake izotope lakše se degradiraju, a dio težih izotopa u supstratu se povećava, što upućuje na mikrobiološku ulogu u biokemijskom ciklusu. Kako je izotopsko frakcioniranje proporcionalno degradaciji zavisno od tipa onečišćenja, korištenjem podataka mjerenja izotopskih odnosa može se procijeniti mikrobiološka degradacija od 50 % do 99 % od početne koncentracije

    Microbial diversity and methanogenic activity of antrim shale formation waters from recently fractured wells

    Get PDF
    The Antrim Shale in the Michigan Basin is one of the most productive shale gas formations in the U.S., but optimal resource recovery strategies must rely on a thorough understanding of the complex biogeochemical, microbial, and physical interdependencies in this and similar systems. We used Illumina MiSeq 16S rDNA sequencing to analyze the diversity and relative abundance of prokaryotic communities present in Antrim shale formation water of three closely spaced recently fractured gas-producing wells. In addition, the well waters were incubated with a suite of fermentative and methanogenic substrates in an effort to stimulate microbial methane generation. The three wells exhibited substantial differences in their community structure that may arise from their different drilling and fracturing histories. Bacterial sequences greatly outnumbered those of archaea and shared highest similarity to previously described cultures of mesophiles and moderate halophiles within the Firmicutes, Bacteroidetes, and d- and e-Proteobacteria. The majority of archaeal sequences shared highest sequence similarity to uncultured euryarchaeotal environmental clones. Some sequences closely related to cultured methylotrophic and hydrogenotrophic methanogens were also present in the initial well water. Incubation with methanol and trimethylamine stimulated methylotrophic methanogens and resulted in the largest increase in methane production in the formation waters, while fermentation triggered by the addition of yeast extract and formate indirectly stimulated hydrogenotrophic methanogens. The addition of sterile powdered shale as a complex natural substrate stimulated the rate of methane production without affecting total methane yields. Depletion of methane indicative of anaerobic methane oxidation (AMO) was observed over the course of incubation with some substrates. This process could constitute a substantial loss of methane in the shale formation. © 2013 Wuchter, Banning, Mincer, Drenzek and Coolen

    Multi-isotopic constraints on the origin and fate of n-alkyl lipids in recent sediments

    No full text
    Recent analytical advances now make it feasible to determine multiple isotopic characteristics of individual organic compounds within complex mixtures. In particular, hydrogen isotopic compositions and radiocarbon contents can now be readily determined to complement information derived from stable carbon isotopic analysis. When used in concert, these lines of geochemical information can yield important new insights into the origins and histories of the biomarker compounds, and lead to new and refined interpretation of molecular proxy records of paleoenvironmental variability. We present multi-isotopic data on n-alkyl lipids isolated from a range of recent aquatic sediments in order to demonstrate both the complexity of geochemical signals preserved in environmental matices, and the utility of multi-isotopic information in constraining inputs. In particular, we focus on long-chain lipids derived from terrestrial and marine precursors. Marked radiocarbon age and stable isotopic variability is apparent, even within closely related homologous series of compounds recovered from the same sample. Based on multi-isotope characteristics, we interpret these variations in terms of differences in source versus reactivity of individual organic compounds, and discuss implications for interpretation of the sedimentary record

    Enantiomer signature and carbon isotope evidence for the migration and transformation of DDTs in arable soils across China

    Get PDF
    Due to the adverse impact of DDTs on ecosystems and humans, a full fate assessment deems a comprehensive study on their occurrence in soils over a large region. Through a sampling campaign across China, we measured the concentrations, enantiomeric fractions (EFs), compound-specific carbon isotope composition of DDT and its metabolites, and the microbial community in related arable soils. The geographically total DDT concentrations are higher in eastern than western China. The EFs and δ(13)C of o,p’-DDT in soils from western China show smaller deviations from those of racemic/standard compound, indicating the DDT residues there mainly result from atmospheric transport. However, the sources of DDT in eastern China are mainly from historic application of technical DDTs and dicofol. The inverse dependence of o,p’-DDT and p,p’-DDE on temperature evidences the transformation of parent DDT to its metabolites. Initial usage, abiotic parameters and microbial communities are found to be the main factors influencing the migration and transformation of DDT isomers and their metabolites in soils. In addition, a prediction equation of DDT concentrations in soils based on stepwise multiple regression analysis is developed. Results from this study offer insights into the migration and transformation pathways of DDTs in Chinese arable soils, which will allow data-based risk assessment on their use
    corecore