131 research outputs found
A tyrosine-rich amelogenin peptide promotes neovasculogenesis in vitro and ex vivo
The formation of new blood vessels has been shown to be fundamental in the repair of many damaged tissues, and we have recently shown that the adult human periodontal ligament contains multipotent stem/progenitor cells that are capable of undergoing vasculogenic and angiogenic differentiation in vitro and ex vivo. Enamel matrix protein (EMP) is a heterogeneous mixture of mainly amelogenin-derived proteins produced during tooth development and has been reported to be sometimes effective in stimulating these processes, including in clinical regeneration of the periodontal ligament. However, the identity of the specific bioactive component of EMP remains unclear. In the present study we show that, while the high-molecular-weight Fraction A of enamel matrix derivative (a heat-treated form of EMP) is unable to stimulate the vasculogenic differentiation of human periodontal ligament cells (HPC) in vitro, the low-molecular-weight Fraction C significantly up-regulates the expression of the endothelial markers VEGFR2, Tie-1, Tie-2, VE-cadherin and vWF and markedly increases the internalization of low-density lipoprotein. Furthermore, we also demonstrate, for the first time, that the synthetic homolog of the 45-amino acid tyrosine-rich amelogenin peptide (TRAP) present in Fraction C is likely to be responsible for its vasculogenesis-inducing activity. Moreover, the chemically synthesized TRAP peptide is also shown here to be capable of up-regulating the angiogenic differentiation of the HPC, based on its marked stimulation of in vitro cell migration and tubule formation and of blood vessel formation assay in a chick embryo chorioallantoic membrane model ex vivo. This novel peptide, and modified derivatives, might thereby represent a new class of regenerative drug that has the ability to elicit new blood vessel formation and promote wound healing in vivo. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved
Inactivation of aPKCλ Reveals a Context Dependent Allocation of Cell Lineages in Preimplantation Mouse Embryos
BACKGROUND:During mammalian preimplantation development, lineage divergence seems to be controlled by the interplay between asymmetric cell division (once cells are polarized) and positional information. In the mouse embryo, two distinct cell populations are first observed at the 16-cell stage and can be distinguished by both their position (outside or inside) and their phenotype (polarized or non-polarized). Many efforts have been made during the last decade to characterize the molecular mechanisms driving lineage divergence. METHODOLOGY/PRINCIPAL FINDINGS:In order to evaluate the importance of cell polarity in the determination of cell fate we have disturbed the activity of the apical complex aPKC/PAR6 using siRNA to down-regulate aPKClambda expression. Here we show that depletion of aPKClambda results in an absence of tight junctions and in severe polarity defects at the 16-cell stage. Importantly, we found that, in absence of aPKClambda, cell fate depends on the cellular context: depletion of aPKClambda in all cells results in a strong reduction of inner cells at the 16-cell stage, while inhibition of aPKClambda in only half of the embryo biases the progeny of aPKClambda defective blastomeres towards the inner cell mass. Finally, our study points to a role of cell shape in controlling cell position and thus lineage allocation. CONCLUSION:Our data show that aPKClambda is dispensable for the establishment of polarity at the 8-cell stage but is essential for the stabilization of cell polarity at the 16-cell stage and for cell positioning. Moreover, this study reveals that in addition to positional information and asymmetric cell divisions, cell shape plays an important role for the control of lineage divergence during mouse preimplantation development. Cell shape is able to influence both the type of division (symmetric or asymmetric) and the position of the blastomeres within the embryo
Interaction of enamel matrix proteins with human periodontal ligament cells
Dorothy Hodgkin Postgraduate Award for research
studies (jointly funded by the Engineering and Physical Sciences Research
Council, UK, and by Institut Straumann) and the Research Discretionary
Funds of the Periodontology Unit, UCL Eastman Dental Institute.
Financial support was also provided by the NIHR Comprehensive
Biomedical Research Centre and by the WCU Program of the National
Research Foundation of Korea (NRF) funded by the Ministry of Education,
Science and Technology (No. R31-10069)
Nf2/Merlin: a coordinator of receptor signalling and intercellular contact
This review explores possible mechanisms by which the neurofibromatosis type-2 tumour suppressor Merlin regulates contact-dependent inhibition of proliferation. Starting from an evolutionary perspective, the concurrent emergence of intercellular contacts and proliferation control in multicellular organisms is first considered. Following a brief survey of the molecular and subcellular milieus in which merlin performs its function, the importance of different cellular and biological contexts in defining the function of merlin is discussed. Finally, an integrated model for merlin and the Ezrin, Radixin, and Moesin (ERM) proteins functioning in the regulation of cellular interfaces is proposed
Diabetes medication regimens and patient clinical characteristics in the national patient-centered clinical research network, PCORnet
We used electronic medical record (EMR) data in the National Patient-Centered Clinical Research Network (PCORnet) to characterize “real-world” prescription patterns of Type 2 diabetes (T2D) medications. We identified a retrospective cohort of 613,203 adult patients with T2D from 33 datamarts (median patient number: 12,711) from 2012 through 2017 using a validated computable phenotype. We characterized outpatient T2D prescriptions for each patient in the 90 days before and after cohort entry, as well as demographics, comorbidities, non-T2D prescriptions, and clinical and laboratory variables in the 730 days prior to cohort entry. Approximately half of the individuals in the cohort were females and 20% Black. Hypertension (60.3%) and hyperlipidemia (50.5%) were highly prevalent. Most patients were prescribed either a single T2D drug class (42.2%) or had no evidence of a T2D prescription in the EMR (42.4%). A smaller percentage was prescribed multiple T2D drug types (15.4%). Among patients prescribed a single T2D drug type, metformin was the most common (42.6%), followed by insulin (18.2%) and sulfonylureas (13.9%). Newer classes represented approximately 13% of single T2D drug type prescriptions (dipeptidyl peptidase-4 inhibitors [6.6%], glucagon-like peptide-1 receptor agonists [2.5%], thiazolidinediones [2.0%], and sodium-glucose cotransporter-2 inhibitors [1.6%]). Among patients prescribed multiple T2D drug types, the most common combination was metformin and sulfonylureas (63.5%). Metformin-based regimens were highly prevalent in PCORnet's T2D population, whereas newer agents were prescribed less frequently. PCORnet is a novel source for the potential conduct of observational studies among patients with T2D
Regulation of signal duration and the statistical dynamics of kinase activation by scaffold proteins
Scaffolding proteins that direct the assembly of multiple kinases into a
spatially localized signaling complex are often essential for the maintenance
of an appropriate biological response. Although scaffolds are widely believed
to have dramatic effects on the dynamics of signal propagation, the mechanisms
that underlie these consequences are not well understood. Here, Monte Carlo
simulations of a model kinase cascade are used to investigate how the temporal
characteristics of signaling cascades can be influenced by the presence of
scaffold proteins. Specifically, we examine the effects of spatially localizing
kinase components on a scaffold on signaling dynamics. The simulations indicate
that a major effect that scaffolds exert on the dynamics of cell signaling is
to control how the activation of protein kinases is distributed over time.
Scaffolds can influence the timing of kinase activation by allowing for kinases
to become activated over a broad range of times, thus allowing for signaling at
both early and late times. Scaffold concentrations that result in optimal
signal amplitude also result in the broadest distributions of times over which
kinases are activated. These calculations provide insights into one mechanism
that describes how the duration of a signal can potentially be regulated in a
scaffold mediated protein kinase cascade. Our results illustrate another
complexity in the broad array of control properties that emerge from the
physical effects of spatially localizing components of kinase cascades on
scaffold proteins.Comment: 12 pages, 6 figure
Membrane Recruitment of Scaffold Proteins Drives Specific Signaling
Cells must give the right response to each stimulus they receive. Scaffolding, a signaling process mediated by scaffold proteins, participates in the decoding of the cues by specifically directing signal transduction. The aim of this paper is to describe the molecular mechanisms of scaffolding, i.e. the principles by which scaffold proteins drive a specific response of the cell. Since similar scaffold proteins are found in many species, they evolved according to the purpose of each organism. This means they require adaptability. In the usual description of the mechanisms of scaffolding, scaffold proteins are considered as reactors where molecules involved in a cascade of reactions are simultaneously bound with the right orientation to meet and interact. This description is not realistic: (i) it is not verified by experiments and (ii) timing and orientation constraints make it complex which seems to contradict the required adaptability. A scaffold protein, Ste5, is used in the MAPK pathway of Saccharomyces Cerevisiae for the cell to provide a specific response to stimuli. The massive amount of data available for this pathway makes it ideal to investigate the actual mechanisms of scaffolding. Here, a complete treatment of the chemical reactions allows the computation of the distributions of all the proteins involved in the MAPK pathway when the cell receives various cues. These distributions are compared to several experimental results. It turns out that the molecular mechanisms of scaffolding are much simpler and more adaptable than previously thought in the reactor model. Scaffold proteins bind only one molecule at a time. Then, their membrane recruitment automatically drives specific, amplified and localized signal transductions. The mechanisms presented here, which explain how the membrane recruitment of a protein can produce a drastic change in the activity of cells, are generic and may be commonly used in many biological processes
How does neopatrimonialism affect the African state? The case of tax collection in Zambia
Following the neopatrimonialism paradigm, it can be hypothesised that in African states informal politics of the rulers infringe on the collection of taxes and in turn reduce state revenue. This article tests this proposition for the case of Zambia. Neopatrimonial continuity in the country is evidenced by three factors : the concentration of political power, the award of personal favours, and
the misuse of state resources. Despite this continuity, the revenue performance increased considerably with the creation of the semi-autonomous Zambia Revenue Authority. Donor pressure has been the most important intervening variable accounting for this improvement. Yet, strengthening the collection of
central state revenue has been consistent with a neopatrimonial rationale, and may even have fed neopatrimonialism overall, by providing increased resources for particularistic expenditure
- …