7 research outputs found

    Correlation of mRNA delivery timing and protein expression in lipid-based transfection

    Get PDF
    Non-viral gene delivery is constrained by the dwell time that most synthetic nucleic acid nanocarriers spend inside endosomal compartments. In order to overcome this endosomal-release bottleneck, methods are required that measure nanocarrier uptake kinetics and transfection efficiency simultaneously. Here, we employ live-cell imaging on single-cell arrays (LISCA) to study the delivery-time distribution of lipid-based mRNA complexes under varied serum conditions. By fitting a translation-maturation model to hundreds of individual eGFP reporter fluorescence time courses, the protein expression onset times and the expression rates after transfection are determined. Using this approach, we find that delivery timing and protein expression rates are not intrinsically correlated at the single-cell level, even though population-averaged values of both parameters conjointly change as a function of increasing external serum protein fraction. Lipofectamine-mediated delivery showed decreased transfection efficiency and longer delivery times with increasing serum protein concentration. This is in contrast to ionizable lipid nanoparticle (i-LNP)-mediated transfer, which showed increased efficiency and faster uptake in the presence of serum. In conclusion, the interdependences of single-cell expression rates and onset timing provide additional clues on uptake and release mechanisms, which are useful for improving nucleic acid delivery

    Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice

    Get PDF
    BACKGROUND: PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson\u27s disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice. METHODS AND FINDINGS: Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting. CONCLUSIONS: Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1⁻/⁻ mice to inflammation and injury-induced cell death

    Biofluid Biomarkers in Huntington's Disease

    Get PDF
    Huntington's disease (HD) is a chronic progressive neurodegenerative condition where new markers of disease progression are needed. So far no disease-modifying interventions have been found, and few interventions have been proven to alleviate symptoms. This may be partially explained by the lack of reliable indicators of disease severity, progression, and phenotype.Biofluid biomarkers may bring advantages in addition to clinical measures, such as reliability, reproducibility, price, accuracy, and direct quantification of pathobiological processes at the molecular level; and in addition to empowering clinical trials, they have the potential to generate useful hypotheses for new drug development.In this chapter we review biofluid biomarker reports in HD, emphasizing those we feel are likely to be closest to clinical applicability

    Current Concepts in the Diagnosis, Pathophysiology, and Treatment of Delirium: A European Perspective

    No full text
    Delirium is a complex syndrome defined as an acute, fluctuating syndrome of altered attention, awareness, and cognition. Delirium is common in the elderly, but unfortunately underdiagnosed. The consequences could be significant such as an increase in mortality, hospitalization, loss of autonomy, and increased risk to be institutionalized. The predisposing and precipitating factors are well known, but the pathogenesis is not yet identified clearly. However, evidence that delirium is a neurotoxic factor which develops due primarily to neurotransmitter (cholinergic insufficiency) and inflammatory (increase in stress response/neuroinflammation) mechanisms is increasing each passing day. Delirium is associated with serious complications, but can also be treatable if diagnosed early and managed properly. It is important to develop primary and secondary prevention and therefore close contact with the patient, ensuring adequate vision, hearing, nutrition, hydration, and sleep; informing the caregivers about delirium for recognizing early symptoms of delirium, mobilizing the patient as early as possible, and managing the pain are strongly recommended. Besides, clinicians must identify the real underlying medical conditions. If non-pharmacologic interventions are insufficient, pharmacologic therapy should be implemented
    corecore