3,098 research outputs found
Positional changes of pericentromeric heterochromatin and nucleoli in postmitotic Purkinje cells during murine cerebellum development
Previous studies revealed changes of pericentromeric heterochromatin arrangements in postmitotic Purkinje cells (PCs) during postnatal development in the mouse cerebellum (Manuelidis, 1985; Martou and De Boni, 2000). Here, we performed vibratome sections of mouse cerebellum (vermis) at P0 (day of birth), at various stages of the postnatal development (P2-P21), as well as in very young (P28) and 17-months-old adults. FISH was carried out on these sections with major mouse satellite DNA in combination with immunostaining of the nucleolar protein B23 (nucleophosmin). Laser confocal microscopy, 3D reconstructions and quantitative image analysis were employed to describe changes in the number and topology of chromocenters and nucleoli. At all stages of postnatal PC development heterochromatin clusters were typically associated either with nucleoli or with the nuclear periphery, while non-associated clusters were rare (<1% at P0 to P21 and about 3% in adult stages). At P0, about 2-4 nucleoli and 7-8 pericentromeric heterochromatin clusters were variably located within PC nuclei. The relative volume of heterochromatin clusters associated with the nucleoli (about 50%) was roughly equal to the volume of clusters associated with the nuclear periphery. Positional changes of both nucleoli and centromeres towards the nuclear center occurred between P0 and P6. At P6 the average number of chromocenters per PC nucleus had decreased to about five. In agreement with previous studies, one or occasionally two nucleoli were noted at the nuclear center surrounded by major perinucleolar heterochromatin clusters. The relative volume of these perinucleolar clusters increased to about 84%, while the volume of clusters in the nuclear periphery decreased to about 15%. At subsequent postnatal stages, the arrangement of most pericentromeric heterochromatin around a central nucleolus was maintained. In adult animals, however, we observed a partial redistribution of heterochromatin towards the nuclear periphery. The average total number of pericentromeric heterochromatin signals increased again to about ten. The volume of heterochromatin associated with the nuclear periphery roughly doubled (30%), while the volume of the perinucleolar heterochromatin decreased correspondingly. Copyright (C) 2004 S. Karger AG, Basel
Double in situ hybridization in combination with digital image analysis: A new approach to study interphase chromosome topography
Double in situ hybridization with mercurated and biotinylated chromosome specific DNA probes in combination with digital image analysis provides a new approach to compare the distribution of homologous and nonhomologous chromosome targets within individual interphase nuclei. Here we have used two DNA probes representing tandemly repeated sequences specific for the constitutive heterochromatin of the human chromosomes 1 and 15, respectively, and studied the relative arrangements of these chromosome targets in interphase nuclei of human lymphocytes, amniotic fluid cells, and fibroblasts, cultivated in vitro. We have developed a 2D-image analysis approach which allows the rapid evaluation of large numbers of interphase nuclei. Models to test for a random versus nonrandom distribution of chromosome segments are discussed taking into account the three-dimensional origin of the evaluated 2D-distribution. In all three human diploid cell types the measurements of target-target and target-center distances in the 2D-nuclear image revealed that the labeled segments of the two chromosomes 15 were distributed both significantly closer to each other and closer to the center of the nuclear image than the labeled chromosome 1 segments. This result can be explained by the association of nucleolus organizer regions on the short arm of chromosome 15 with nucleoli located more centrally in these nuclei and does not provide evidence for a homologous association per se. In contrast, evaluation of the interphase positioning of the two chromosome 1 segments fits the random expectation in amniotic fluid and fibroblast cells, while in experiments using lymphocytes a slight excess of larger distances between these homologous targets was occasionally observed. 2D-distances between the labeled chromosome 1 and 15 segments showed a large variability in their relative positioning. In conclusion our data do not support the idea of a strict and permanent association of these homologous and nonhomologous targets in the cell types studied so far
Chromosomal Gains and Losses in Uveal Melanomas Detected by Comparative Genomic Hybridization
Eleven uveal melanomas were analyzed using comparative genomic hybridization (CGH). The most abundant genetic changes were loss of chromosome 3, overrepresentation of 6p, loss of 6q, and multiplication of 8q. The smallest overrepresented regions on 6p and 8q were 6pterp21 and 8q24qter, respectively. Several additional gains and losses of chromosome segments were repeatedly observed, the most frequent one being loss of 9p (three cases). Monosomy 3 appeared to be a marker for ciliary body involvement.
CGH data were compared with the results of chromosome banding. Some alterations, e.g., gains of 6p and losses of 6q, were observed with higher frequencies after CGH, while others, e.g., 9p deletions, were detected only by CGH. The data suggest some similarities of cytogenetic alterations between cutaneous and uveal melanoma. In particular, the 9p deletions are of interest due to recent reports about the location of a putative tumor-suppressor gene for cutaneous malignant melanoma in this region
Near-optimal asymmetric binary matrix partitions
We study the asymmetric binary matrix partition problem that was recently
introduced by Alon et al. (WINE 2013) to model the impact of asymmetric
information on the revenue of the seller in take-it-or-leave-it sales.
Instances of the problem consist of an binary matrix and a
probability distribution over its columns. A partition scheme
consists of a partition for each row of . The partition acts
as a smoothing operator on row that distributes the expected value of each
partition subset proportionally to all its entries. Given a scheme that
induces a smooth matrix , the partition value is the expected maximum
column entry of . The objective is to find a partition scheme such that
the resulting partition value is maximized. We present a -approximation
algorithm for the case where the probability distribution is uniform and a
-approximation algorithm for non-uniform distributions, significantly
improving results of Alon et al. Although our first algorithm is combinatorial
(and very simple), the analysis is based on linear programming and duality
arguments. In our second result we exploit a nice relation of the problem to
submodular welfare maximization.Comment: 17 page
Laser-UV-microirradiation of interphase nuclei and posttreatment with caffeine: a new approach to establish the arrangement of interphase chromosomes
Laser UV microirradiation of Chinese hamster interphase cells combined with caffeine post-treatment produced different patterns of chromosome damage in mitosis following irradiation of a small area of the nucleus that may be classified in three categories: I) intact metaphase figures, II) chromosome damage confined to a small area of the metaphase spread, III) mitotic figures with damage on all chromosomes. Category III might be the consequence of a non-localized distortion of nuclear metabolism. By contrast, category II may reflect localized DNA damage induced by microirradiation, which could not be efficiently repaired due to the effect of caffeine. If this interpretation is right, in metaphase figures of category II chromosome damage should occur only at the irradiation site. The effect might then be used to investigate neighbourhood relationships of individual chromosomes in the interphase nucleus
Evolutionary game theory in growing populations
Existing theoretical models of evolution focus on the relative fitness
advantages of different mutants in a population while the dynamic behavior of
the population size is mostly left unconsidered. We here present a generic
stochastic model which combines the growth dynamics of the population and its
internal evolution. Our model thereby accounts for the fact that both
evolutionary and growth dynamics are based on individual reproduction events
and hence are highly coupled and stochastic in nature. We exemplify our
approach by studying the dilemma of cooperation in growing populations and show
that genuinely stochastic events can ease the dilemma by leading to a transient
but robust increase in cooperationComment: 4 pages, 2 figures and 2 pages supplementary informatio
(2R*,3R*,4aS*,6aR*,11aS*,11bS*)-Methyl 2-acetoxy-11b-hydroxy-3,7-dimethyl-1,2,3,4,4a,5,6,6a,7,11,11a,11b-dodecahydrophenanthro[3,2-b]furan-3-carboxylate
In the title compound, C22H30O6, the conformation of the molecule is dictated by an intramolecular C—H⋯O contact. The crystal structure is stabilized via intermolecular C—H⋯O, O—H⋯O and C—H⋯π contacts
- …