40 research outputs found

    Small-animal SPECT and SPECT/CT: application in cardiovascular research

    Get PDF
    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease

    A novel enzymatic pathway leading to 1-methylinosine modification in Haloferax volcanii tRNA.

    No full text
    Transfer RNAs of the extreme halophile Haloferax volcanii contain several modified nucleosides, among them 1-methylpseudouridine (m1 psi), pseudouridine (psi), 2'-0-methylcytosine (Cm) and 1-methylinosine (m1l), present in positions 54, 55, 56 and 57 of the psi-loop, respectively. At the same positions in tRNAs from eubacteria and eukaryotes, ribothymidine (T-54), pseudouridine (psi-55), non-modified cytosine (C-56) and non-modified adenosine or guanosine (A-57 or G-57) are found in the so-called T psi-loop. Using as substrate a T7 transcript of Haloferax volcanii tRNA(Ile) devoid of modified nucleosides, the enzymatic activities of several tRNA modification enzymes, including those for m1 psi-54, psi-55, Cm-56 and m1l-57, were detected in cell extracts of H.volcanii. Here, we demonstrate that modification of A-57 into m1l-57 in H.volcanii tRNA(Ile) occurs via a two-step enzymatic process. The first step corresponds to the formation of m1A-57 catalyzed by a S-adenosylmethionine-dependent tRNA methyltransferase, followed by the deamination of the 6-amino group of the adenine moiety by a 1-methyladenosine-57 deaminase. This enzymatic pathway differs from that leading to the formation of m1l-37 in the anticodon loop of eukaryotic tRNA(Ala). In the latter case, inosine-37 formation preceeds the S-adenosylmethionine-dependent methylation of l-37 into m1l-37. Thus, enzymatic strategies for catalyzing the formation of 1-methylinosine in tRNAs differ in organisms from distinct evolutionary kingdoms

    Fiber tracking in q-ball fields using regularized particle trajectories.

    No full text
    International audienceMost of the approaches dedicated to fiber tracking from diffusion-weighted MR data rely on a tensor model. However, the tensor model can only resolve a single fiber orientation within each imaging voxel. New emerging approaches have been proposed to obtain a better representation of the diffusion process occurring in fiber crossing. In this paper, we adapt a tracking algorithm to the q-ball representation, which results from a spherical Radon transform of high angular resolution data. This algorithm is based on a Monte-Carlo strategy, using regularized particle trajectories to sample the white matter geometry. The method is validated using a phantom of bundle crossing made up of haemodialysis fibers. The method is also applied to the detection of the auditory tract in three human subjects
    corecore