479 research outputs found
Towards the electron EDM search. Theoretical study of PbF
We report ab initio relativistic correlation calculations of potential curves
and spectroscopic constants for four lowest-lying electronic states of the lead
monofluoride. We also calculated parameters of the spin-rotational Hamiltonian
for the ground and the first excited states including P,T-odd and P-odd terms.
In particular, we have obtained hyperfine constants of the Pb nucleus.
For the state MHz, MHz and for
the A MHz, MHz. Our values of
the ground state hyperfine constants are in good agreement with the previous
theoretical studies. We discuss and explain seeming disagreement in the sign of
the constant with the recent experimental data. The effective
electric field on the electron , which is important for the planned
experiment to search for the electric dipole moment of the electron, is found
to be 3.3 * 10^{10} V/cm
`St\"uckelberg interferometry' with ultracold molecules
We report on the realization of a time-domain `St\"uckelberg interferometer',
which is based on the internal state structure of ultracold Feshbach molecules.
Two subsequent passages through a weak avoided crossing between two different
orbital angular momentum states in combination with a variable hold time lead
to high-contrast population oscillations. This allows for a precise
determination of the energy difference between the two molecular states. We
demonstrate a high degree of control over the interferometer dynamics. The
interferometric scheme provides new possibilities for precision measurements
with ultracold molecules.Comment: 4 pages, 5 figure
Time-reversal violating rotation of polarization plane of light in gas placed in electric field
Rotation of polarization plane of light in gas placed in electric field is
considered. Different factors causing this phenomenon are investigated. Angle
of polarization plane rotation for transition 6S_{1/2} - 7S_{1/2} in cesium
(lambda=539 nm) is estimated. The possibility to observe this effect
experimentally is discussed.Comment: 10 pages, Late
Large Electric Dipole Moments of Heavy Leptons
In many models of CP violation, the electric dipole moments (EDMs) of leptons
scale as the cube of the lepton mass. In these models, the EDM of a 100 GeV
heavy lepton would be a billion times greater than that of the muon, and could
be as large as a 0.01 e-fermi. In other models, in which the heavy leptons have
different properties from the lighter generations, a similarly large EDM can be
obtained. A large EDM could dominate the electromagnetic properties of heavy
leptons. The angular distribution and production cross-section of both charged
and neutral heavy leptons with large dipole moments is calculated and
discussed. The interesting possibility that a heavy neutrino with a large EDM
could leave an ionization track in a drift chamber is investigated.Comment: Discussion expanded extensively to include model-dependence of
results. Calculations unchanged. Note Added To Acknowledgments: This paper is
dedicated to the memory of Nathan Isgu
Measurement of the electron electric dipole moment using GdIG
A new method for the detection of the electron edm using a solid is
described. The method involves the measurement of a voltage induced across the
solid by the alignment of the samples magnetic dipoles in an applied magnetic
field, H. A first application of the method to GdIG has resulted in a limit on
the electron edm of 5E-24 e-cm, which is a factor of 40 below the limit
obtained from the only previous solid-state edm experiment. The result is
limited by the imperfect discrimination of an unexpectedly large voltage that
is even upon the reversal of the sample magnetization.Comment: 10 pages, 5 figures, v2:references corrected, submitted to PRL,
v3:added labels to figure
CP violation from noncommutative geometry
If the geometry of space-time is \nc, i.e. , then \nc \cpviolng effects may be manifest at low energies. For a
\nc scale , \cpviol from \ncg is
comparable to that from the Standard Model (SM) alone: the \nc contributions
to and in the -system, may actually dominate
over the Standard Model contributions. Present data permit \ncg to be the
only source of \cpviol. Furthermore the most recent findings for g-2 of the
muon are consistent with predictions from \ncg. If the geometry of space-time
is \nc, , then \nc \cpviolng
effects may be manifest at low energies. For a \nc scale , \cpviol from \ncg is comparable to that from the
Standard Model (SM) alone: the \nc contributions to and
in the K-system, may actually dominate over the Standard
Model contributions. Present data permit \ncg to be the only source of
\cpviol. Furthermore the most recent findings for g-2 of the muon are
consistent with predictions from \ncg.Comment: fixed notation, corrected some typo
Measurement of the electron's electric dipole moment using YbF molecules: methods and data analysis
We recently reported a new measurement of the electron's electric dipole
moment using YbF molecules [Nature 473, 493 (2011)]. Here, we give a more
detailed description of the methods used to make this measurement, along with a
fuller analysis of the data. We show how our methods isolate the electric
dipole moment from imperfections in the experiment that might mimic it. We
describe the systematic errors that we discovered, and the small corrections
that we made to account for these. By making a set of additional measurements
with greatly exaggerated experimental imperfections, we find upper bounds on
possible uncorrected systematic errors which we use to determine the systematic
uncertainty in the measurement. We also calculate the size of some systematic
effects that have been important in previous electric dipole moment
measurements, such as the motional magnetic field effect and the geometric
phase, and show them to be negligibly small in the present experiment. Our
result is consistent with an electric dipole moment of zero, so we provide
upper bounds to its size at various confidence levels. Finally, we review the
prospects for future improvements in the precision of the experiment.Comment: 35 pages, 15 figure
All electromagnetic form factors
The electromagnetic form factors of spin-1/2 particles are known, but due to
historical reasons only half of them are found in many textbooks. Given the
importance of the general result, its model independence, its connection to
discrete symmetries and their violations we made an effort to derive and
present the general result based only on the knowledge of Dirac equation. We
discuss the phenomenology connected directly with the form factors, and spin
precession in external fields including time reversal violating terms. We apply
the formalism to spin-flip synchrotron radiation and suggest pedagogical
projects.Comment: Latex, 22 page
The Neutron Electric Dipole Moment and CP-violating Couplings in the Supersymmetric Standard Model without R-parity
We analyze the neutron electric dipole moment (EDM) in the Minimal
Supersymmetric Model with explicit R-parity violating terms. The leading
contribution to the EDM occurs at the 2-loop level and is dominated by the
chromoelectric dipole moments of quarks, assuming there is no tree-level
mixings between sleptons and Higgs bosons or between leptons and gauginos.
Based on the experimental constraint on the neutron EDM, we set limits on the
imaginary parts of complex couplings and
due to the virtual b-loop or tau-loop.Comment: final manuscript to appear in Phys. Rev. D, 15 pages, latex, 4
figures include
On the EDM Cancellations in D-brane models
We analyze the possibility of simultaneous electron, neutron, and mercury
electric dipole moment (EDM) cancellations in the mSUGRA and D--brane models.
We find that the mercury EDM constraint practically rules out the cancellation
scenario in D-brane models whereas in the context of mSUGRA it is still allowed
with some fine-tuning.Comment: 10 pages, to appear in Phys. Rev. Let
- …
