4,497 research outputs found

    Advances in startercultures and cultured foods

    Get PDF
    With 2005 retail sales close to $4.8 million, cultured dairy products are driving the growth of dairy foods consumption. Starter cultures are of great industrial significance in that they play a vital role in the manufacturing, flavor, and texture development of fermented dairy foods. Furthermore, additional interest in starter bacteria has been generated because of the data accumulating on the potential health benefits of these organisms. Today, starter cultures for fermented foods are developed mainly by design rather than by the traditional screening methods and trial and error. Advances in genetics and molecular biology have provided opportunities for genomic studies of these economically significant organisms and engineering of cultures that focuses on rational improvement of the industrially useful strain. Furthermore, much research has been published on the health benefits associated with ingesting cultured dairy foods and probiotics, particularly their role in modulating immune function. The aim of this review is to describe some of the major scientific advances made in starter and non-starter lactic acid bacteria during the past 10 yr, including genomic studies on dairy starter cultures, engineering of culture attributes, advances in phage control, developments in methods to enumerate lactic acid bacteria and probiotics in dairy foods, and the potential role of cultured dairy foods in modulation of immune function

    Role of Lactobacilli in Flavour Development of Cheddar Cheese.

    Get PDF
    End of Project ReportCheddar cheese is a complex microbial ecosystem. The internal cheese environment, in particular of hard and semi-hard cheeses, is not conducive to the growth of many microorganisms. At the beginning of ripening the dominant microorganisms are the starter bacteria which are present at high levels (~109/g). However, during ripening, non-starter lactic acid bacteria (NSLAB) grow from relatively low levels (<103/g) at the beginning of ripening, to 108/g within 6 - 8 weeks. Other bacteria, e.g. enterococci and staphylococci, may also be present but in much lower numbers. In a previous study of mature and extra mature Cheddar cheeses from different manufacturers (see End of Project Report No. 1), it was found that the NSLAB population was dominated by strains of Lb. paracasei. However, their contribution to cheese flavour and their source(s) are still unclear, nor is it known if the NSLAB flora is unique to each plant. Hence, understanding the growth of this group of organisms in cheese is a key to defining their role in flavour development. The biochemistry of flavour development in cheese is poorly understood. For most cheese varieties, including Cheddar, proteolysis, which results in the accumulation of free amino acids, is of vital importance for flavour development. Increasing evidence suggests that the main contribution of amino acids is as substrates for the development of more complex flavour and aroma compounds. The manner by which such compounds are generated in cheese is currently the focus of much research. Starter bacteria have been shown to contain a range of enzymes capable of facilitating the conversion of amino acids to potential flavour compounds. However, the potential of lactobacilli (NSLAB) to produce similar enzymes has only recently been investigated. Hence, although, it is generally accepted that the cheese starter flora is the primary defining influence on flavour development, the contribution of NSLAB is also considered significant. The objectives of these studies were: - to develop a greater understanding of the behaviour of NSLAB in cheese, and - to identify suitable strains, and other cheese bacteria, to be used as starter adjuncts for flavour improvement.Department of Agriculture, Food and the Marin

    Influence of Enterococci and Thermophilic Starter Bacteria on Cheddar Cheese Flavour

    Get PDF
    End of Project ReportThis project set out to identify suitable enterococci and thermophilic starter strains which could be added to the cheese during manufacture (as starter adjuncts) with the specific aims of enhancing flavour during ripening as well as facilitating flavour diversity - a trait sought by many commercial Cheddar companies. This project confirmed the potential of thermophilic lactic acid strains to affect flavour when used as starter adjuncts in Cheddar cheese manufacture. Their use can also lead to the development of novel flavours. Many adjunct cultures proposed to-date to enhance Cheddar flavour are composed of strains of lactococcal starter, selected for their flavouring capacity. However, application of such strains in industry would lead to increased probability of phage attack on the primary starter. On the other hand, thermophilic lactic acid strains are phage unrelated to conventional starter and thus would not lead to the introduction of starter specific phage into the cheese plant. A thermophilic strain from the Moorepark collection (DPC 4571) was shown to have major commercial potential as a flavour enhancer.Department of Agriculture, Food and the Marin

    QTL Analysis of Mineral Content in Perennial Ryegrass (\u3cem\u3eLolium Perenne\u3c/em\u3e L.)

    Get PDF
    Variation in mineral content of grasses can be strongly influenced by genetic factors. Grass tetany (hypomagnesemia) of cattle and sheep is due to disturbances in serum magnesium levels. In Southern Australia, resultant levels of mortality in cattle vary between 0.5-1.5% of total stock numbers. Serum magnesium variation may be due to feed deficits, or dietary imbalances that interfere with magnesium metabolism. High levels of potassium appear to exert negative effects on the levels of magnesium in the blood. Italian ryegrass genotypes with high levels of magnesium can alleviate the incidence of grass tetany. The genetic control of mineral content, including magnesium, in perennial ryegrass has been investigated using molecular marker-based analysis

    Silicone encapsulation of thin-film SiOâ‚“, SiOâ‚“Ny and SiC for modern electronic medical implants: a comparative long-term ageing study

    Get PDF
    Objective. Ensuring the longevity of implantable devices is critical for their clinical usefulness. This is commonly achieved by hermetically sealing the sensitive electronics in a water impermeable housing, however, this method limits miniaturisation. Alternatively, silicone encapsulation has demonstrated long-term protection of implanted thick-film electronic devices. However, much of the current conformal packaging research is focused on more rigid coatings, such as parylene, liquid crystal polymers and novel inorganic layers. Here, we consider the potential of silicone to protect implants using thin-film technology with features 33 times smaller than thick-film counterparts. Approach. Aluminium interdigitated comb structures under plasma-enhanced chemical vapour deposited passivation (SiOx, SiOxNy, SiOxNy + SiC) were encapsulated in medical grade silicones, with a total of six passivation/silicone combinations. Samples were aged in phosphate-buffered saline at 67‰ for up to 694 days under a continuous ±5 V biphasic waveform. Periodic electrochemical impedance spectroscopy measurements monitored for leakage currents and degradation of the metal traces. Fourier-transform infrared spectroscopy, x-ray photoelectron spectroscopy, focused-ion-beam and scanning-electron- microscopy were employed to determine any encapsulation material changes. Main results. No silicone delamination, passivation dissolution, or metal corrosion was observed during ageing. Impedances greater than 100 G were maintained between the aluminium tracks for silicone encapsulation over SiOxNy and SiC passivations. For these samples the only observed failure mode was open-circuit wire bonds. In contrast, progressive hydration of the SiOx caused its resistance to decrease by an order of magnitude. Significance. These results demonstrate silicone encapsulation offers excellent protection to thin-film conducting tracks when combined with appropriate inorganic thin films. This conclusion corresponds to previous reliability studies of silicone encapsulation in aqueous environments, but with a larger sample size. Therefore, we believe silicone encapsulation to be a realistic means of providing long-term protection for the circuits of implanted electronic medical devices

    Assessment of genetic diversity in faba bean based on single nucleotide polymorphism

    Get PDF
    Detection of genetic diversity is important for characterisation of crop plant collections in order to detect the presence of valuable trait variation for use in breeding programs. A collection of faba bean (Vicia faba L.) genotypes was evaluated for intra- and inter-population diversity using a set of 768 genome-wide distributed single nucleotide polymorphism (SNP) markers, of which 657 obtained successful amplification and detected polymorphisms. Gene diversity and polymorphism information content (PIC) values varied between 0.022–0.500 and 0.023–1.00, with averages of 0.363 and 0.287, respectively. The genetic structure of the germplasm collection was analysed and a neighbour-joining (NJ) dendrogram was constructed. The faba bean accessions grouped into two major groups, with several additional smaller sub-groups, predominantly on the basis of geographical origin. These results were further supported by principal co-ordinate analysis (PCoA), deriving two major groupings which were differentiated on the basis of site of origin and pedigree relationships. In general, high levels of heterozygosity were observed, presumably due to the partially allogamous nature of the species. The results will facilitate targeted crossing strategies in future faba bean breeding programs in order to achieve genetic gain.Sukhjiwan Kaur, Noel O. I. Cogan, John W. Forster, and Jeffrey G. Paul

    SNP Discovery and Haplotypic Variation in Full-Length Herbage Quality Genes of Perennial Ryegrass (Lolium Perenne L.)

    Get PDF
    The development of forages with enhanced nutritive value through improvements of herbage quality (digestibility, carbohydrate content) is potentially capable of increasing both meat and milk production by up to 25%. However, the expense and time-consuming nature of the relevant biochemical and biophysical assays has limited breeding improvement for forage quality. The development of accurate high-throughput molecular marker-based selection systems such as single nucleotide polymorphisms (SNPs) permits evaluation of genetic variation and selection of favourable variants to accelerate the production of elite new varieties
    • …
    corecore