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ABSTRACT

With 2005 retail sales close to $4.8 million, cultured
dairy products are driving the growth of dairy foods
consumption. Starter cultures are of great industrial
significance in that they play a vital role in the manu-
facturing, flavor, and texture development of fer-
mented dairy foods. Furthermore, additional interest
in starter bacteria has been generated because of the
data accumulating on the potential health benefits of
these organisms. Today, starter cultures for fermented
foods are developed mainly by design rather than by
the traditional screening methods and trial and error.
Advances in genetics and molecular biology have pro-
vided opportunities for genomic studies of these eco-
nomically significant organisms and engineering of
cultures that focuses on rational improvement of the
industrially useful strain. Furthermore, much re-
search has been published on the health benefits asso-
ciated with ingesting cultured dairy foods and probiot-
ics, particularly their role in modulating immune func-
tion. The aim of this review is to describe some of the
major scientific advances made in starter and non-
starter lactic acid bacteria during the past 10 yr, in-
cluding genomic studies on dairy starter cultures, en-
gineering of culture attributes, advances in phage con-
trol, developments in methods to enumerate lactic acid
bacteria and probiotics in dairy foods, and the poten-
tial role of cultured dairy foods in modulation of im-
mune function.
Key words: starter culture, historical overview, lactic
acid bacteria, probiotic

NONSTARTER LACTIC ACID BACTERIA

Nonstarter lactic acid bacteria (NSLAB) are lactic
acid bacteria that are not part of the normal starter
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bacteria added to the milk for cheese making. They
include lactobacilli (mainly), enterococci, and (occa-
sionally) pediococci and leuconostocs and were first
isolated from cheese in 1912. The NSLAB are probably
present in all cheese and, during ripening, grow from
levels of 102 to 104 cfu/g to ∼108 cfu/g after manufac-
ture. A doubling time of 8.5 d has been found for
NSLAB in Cheddar cheese ripened at 8°C (Jordan and
Cogan, 1993).

Beresford and Williams (2004) have summarized the
NSLAB that have been identified in >50 varieties of
cheese. In most cheeses (regardless whether they are
made from raw or pasteurized milk), the dominant
organisms were facultatively homofermentative lacto-
bacilli (FHL) especially Lactobacillus casei, Lactoba-
cillus plantarum, and Lactobacillus curvatus. Obli-
gate heterofermenters, particularly Lactobacillus bre-
vis, were found in lower numbers. Previous reviews of
NSLAB include those of Peterson and Marshall (1990)
and Fox et al. (1998).

Taxonomy

The taxonomy of Lb. casei is problematic and has
been reviewed by Dellaglio et al. (2002). The type
strain of Lb. casei (Lb. casei ATCC 393) is, in fact, a
strain of Lactobacillus zeae and does not hybridize
with authentic strains of Lb. casei. For this reason,
Collins et al. (1989) proposed that the latter strains
be called Lactobacillus paracasei, whereas Dicks et al.
(1996) proposed that these strains still be considered
as Lb. casei but that Lb. casei ATCC 334, which was
originally isolated from Emmental cheese, be consid-
ered the type strain of Lb. casei and that the name
Lb. paracasei be rejected. Most strains isolated from
cheese are Lb. (para)casei. Lactobacillus casei ATCC
334 has been sequenced and is available on the BLAST
Web site (http://www.ncbi.nlm.nih.gov/BLAST/). Vas-
quez et al. (2005) used restriction enzyme analysis,
temporal temperature gradient gel electrophoresis,
and ribotyping to evaluate 37 strains of Lb. casei, Lb.
paracasei, Lb. zeae, and Lb. rhamnosus, many of which
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were isolated from cheese, including Lb. casei ATCC
393. Sequencing the 16S rRNA genes showed that
polymorphisms were present. This heterogeneity pro-
vides one explanation for the difficulty encountered in
obtaining clear-cut distinctions between Lb. casei and
Lb. paracasei.

Detection

Direct plating on selective media such as de Man,
Rogosa, and Sharpe (MRS) agar adjusted to pH 5.4 or
Lactobacillus selection medium is normally used to
detect NSLAB. Obligately heterofermentative lactoba-
cilli and leuconostocs are vancomycin resistant and
can be isolated using nutritionally suitable media con-
taining vancomycin (20 to 30 �g/100 mL). However,
many FHL and pediococci are also vancomycin resis-
tant, due to production of peptidoglycan precursors
ending in D-lactate rather than D-alanine. A potential
problem in counting NSLAB is that the low numbers
are occluded in a solid matrix raising important ques-
tions—are they all in the aqueous phase, can they
move freely in the aqueous phase, and do they form
microcolonies? Molecular methods, including random
amplified polymorphic DNA (RAPD)-PCR (Fitzsimons
et al., 1999; Baruzzi et al., 2000; deAngelis et al., 2001;
Somers et al., 2001; Antonsson et al., 2003; Sanchez
et al., 2005), repetitive-element (Rep)-PCR (Berthier
et al., 2001), temporal temperature gradient gel elec-
trophoresis (TTGE; Antonsson et al., 2003), denatur-
ing gradient gel electrophoresis (DGGE; Ogier et al.,
2002), single strand conformation polymorphism
(SSCP; Duthoit et al., 2003), and SDS-PAGE
(deAngelis et al., 2001) are also used.

Sources

Milk is the major source of NSLAB in production of
the raw milk cheese Comté cheese (Berthier et al.,
2001). Many FHL resist pasteurization implying that
raw milk is also a likely source in cheese made from
pasteurized milk (Jordan and Cogan, 1999). Lactoba-
cilli have also been isolated from drains, floors near
vats, new vats, counter tops, vacuum packing ma-
chines, molds, and biofilms (Somers et al., 2001); the
latter could be important when vats are refilled with-
out being adequately cleaned.

The number of different strains of each species of
FHL involved has been studied to a limited extent.
Fitzsimons et al. (1999) found an average of 7 strains
(mainly Lb. casei) per cheese and that cheese from
different factories had different strains, whereas Crow
et al. (2001) found that 91% of strains isolated from
6 factories over a 24-mo period comprised 6 strains
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(mainly Lb. casei and Lb. rhamnosus); 1 strain domi-
nated 10% of the cheeses. These researchers also found
the same strain in cheese from consecutive seasons,
suggesting that the cheese factory environment was
their source. Crow et al. (2001) found that 7 of 24
combinations of 2 to 4 strains from an empirical selec-
tion of 24 strains gave consistent improvement in
cheese flavor.

Growth in Milk

There is very little information on the growth of FHL
in milk. Khalid and Marth (1990) studied 3 strains of
Lb. casei and 6 strains of Lb. plantarum. After 1 d at
37°C, the pH values ranged from 5.8 to 6.0. Thereafter,
the pH values decreased slowly and after 6 d, ranged
from 4.5 to 6 for the Lb. plantarum strains and pH 4
to 5 for the Lb. casei strains.

Because NSLAB are prototrophic for several amino
acids and milk is deficient in free amino acids, protein-
ase activity is important for their growth in milk. β-
Casein was preferentially hydrolyzed over αs-casein
by the Lb. plantarum strains, whereas only one strain
of L. casei showed any activity on β-casein (Khalid and
Marth, 1990). Naes and Nissen-Meyer (1992) purified
the proteinase of Lb. (para)casei ssp. (para)casei
NCDO 151. It eluted at similar salt concentrations
as the lactococcal proteinase in anion-exchange and
hydrophobic interaction chromatography, and had the
same N-terminal sequence as that of the lactococcal
proteinase, at least from the second to the ninth AA
residue (the first one gave an equivocal result). In addi-
tion, the respective prt genes of Lb. (para)casei and
Lactococcus lactis showed extensive homology sug-
gesting a strong relationship between them.

Metabolism

Lactobacillus casei and Lb. plantarum ferment lac-
tose by the phosphoenol pyruvate phosphotransferase
system, in which phosphoenol pyruvate is the source
of energy in a complex series of reactions initially
yielding lactose-P on transport across the cell wall,
which is then hydrolyzed by phospho-β-galactosidase
to glucose and galactose-6-phosphate. Both sugars are
then fermented by glycolysis yielding 2 mol of lactic
acid/mol of hexose used. In contrast, gluconate is fer-
mented by FHL by the heterofermentative pathway,
yielding 1 mol of CO2, 1 mol of ethanol/acetic acid, and
1 mol of lactic acid per mol used. For this reason, these
lactobacilli are called facultative heterofermentative
lactobacilli. Both L- and D-lactate are produced by ste-
reospecific NADH-dependent lactate dehydrogenases
(LDH) in varying ratios. A lactate racemase is also
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involved in producing D-lactate, because knockout of
the D-LDH in Lb. plantarum NCIMB 8826 still re-
sulted in D-lactate production (Goffin et al., 2005).
Knockout of both L- and D-LDH in the strain resulted
in acetoin (rather than lactate) production, peptidogly-
can precursors ending in D-alanine (rather than D-
lactate), and vancomycin sensitivity (Ferain et al.,
1996). A 6-gene operon was identified but no clear
function could be attributed to any of the genes, except
one that encoded a membrane protein of the aquaglyc-
eroporin family. The NSLAB are also responsible for
converting L-lactate to D-lactate during cheese ripen-
ing, a reaction that is slower at higher salt concentra-
tions. When sufficient D-lactate is formed, Ca D-lactate
precipitates as white spots in cheese because Ca D-
lactate is more insoluble than Ca L-lactate.

The FHL are unable to use citrate as an energy
source but are able to metabolize it in the presence of
a fermentable sugar by a similar pathway to that of
Cit+ lactococci (Palles et al., 1998). Faster catabolism
of citrate occurs in the presence of galactose than of
glucose or lactose suggesting that catabolite repres-
sion by glucose may be operating.

Succinate is a flavor enhancer found in Emmental
cheese at levels of 0.8 to 1.4 mg/g. Kaneuchi et al.
(1988) tested 144 strains representing 15 species of
lactobacilli for succinate production after incubation
in MRS for 2 d at 35°C. Some species, particularly
Lactobacillus reuteri and Lactobacillus cellobiosus but
not Lb. plantarum or Lb. (para)casei, produced succi-
nate. Lindgren et al. (1990) found that all 5 strains of
Lb. plantarum (silage inoculants) tested could produce
succinate from a mixture of lactate and citrate in a
chemically defined medium over long periods (70 d)
at 28°C, oxidizing the lactate to acetate and formate
(pyruvate-formate lyase activity) and reducing the ci-
trate to succinate (citrate lyase, malate dehydroge-
nase, fumarase, and fumarate reductase activities).
Citrate was not used as energy source in the absence
of glucose. Dudley and Steele (2005) found that some
strains of Lb. plantarum, but not Lb. casei or Lb. rham-
nosus, produced succinate in 100 mM phosphate, pH
7.0, containing citrate and lactate. Succinate can also
be produced from aspartate and propionate or lactate
by propionibacteria (Crow, 1986).

Oude Elferink et al. (2001) showed that Lactobacil-
lus buchneri and the closely related species, Lactoba-
cillus parabuchneri, but not Lactobacillus kefir or Lb.
plantarum, were able to stoichiometrically degrade
lactate into 0.5 mol each of acetate, CO2, and 1,3 pro-
panediol at pH 4.0. No activity was observed at pH
>5.8. Only very small amounts of growth occurred from
optical density 0.04 to 0.18 (∼2 generations). Whether
this reaction occurs in cheese has not been determined.
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Lactobacilli and pediococci are able to produce ace-
tate and CO2 from lactate in the presence of O2 under
Cheddar cheese ripening conditions (Thomas, 1987).
This system depends on the O2 transfer rate of the
plastic wrapper used and the ripening time.

Growth Substrates in Cheese

The NSLAB require an energy source for growth.
All the lactose in cheese is metabolized within the first
weeks of ripening. Thus, sugars in lysed cells and in
the milk fat globule membrane, and citrate and argi-
nine have been suggested as possible substrates. Ci-
trate is not used as an energy source by NSLAB al-
though it is metabolized by many if sugars are also
present. Arginine is an unlikely source for reasons
described below. Residual lactose is still the most
likely substrate because only about 2 mg/g would be
required for growth to 107 to 108 cfu/g.

Lactobacillus plantarum, Lb. brevis, Leuconostoc
mesenteroides, Pediococcus acidilactici, and Pediococ-
cus pentosaceus cannot grow on D-ribose as the sole
source of fermentable carbohydrate, but can metabo-
lize it if glucose is also present (Westby et al., 1993).
Increased biomass over that on glucose alone was pro-
duced, implying that these species obtain energy from
ribose metabolism. How this occurs is not clear but
the results suggest that ribose from RNA degradation
in lysed cells would not be a substrate for growth in
cheese because insufficient lactose or other fer-
mentable sugar would be present.

Arginine Metabolism and Biogenic
Amine Production

Many NSLAB can metabolize arginine by the deini-
nase pathway forming ornithine, citrulline, NH3, and
CO2, and generating 1 mol of ATP from each mol of
arginine used in the process (Poolman, 1993). Theoret-
ically, therefore, arginine is a potential energy source
for lactic acid bacteria (LAB). Laht et al. (2002) found a
curvilinear relationship between the log of the NSLAB
and the concentration of ornithine in Swiss-type
cheese. If arginine were being used as an energy sub-
strate, one would expect a linear relationship; how-
ever, arginine could have been used in other reactions.
Lactic acid bacteria have considerable requirements
for amino acids (and vitamins) and so most media con-
tain sources of amino acids such as yeast extract and
peptones. Such constituents also contain residual sug-
ars and, to our knowledge, no one has shown that LAB
actually utilize arginine in chemically defined media
without another energy source. Laht et al. (2002) did
measure arginine in a tryptone and yeast extract me-
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dium and showed that growth over 9 d at 30°C in-
creased from 0.03 to 0.13 (i.e., 2 generations) during
which time arginine decreased from 0.45 to 0.24 mM;
2.5 mM lactate was also produced, indicating that re-
sidual sugar was present in the medium.

Many NSLAB (e.g., Lb. buchneri) have the potential
to produce biogenic amines, particularly histamine
from histidine (Sumner et al., 1985); in addition, tyra-
mine (from tyrosine), cadaverine (from lysine), and
putrescine (from ornithine) can be produced. Hista-
mine and tyramine are metabolised by Brevibacterium
linens during ripening of smear-ripened cheese
(Leuschner and Hammes, 1998).

NSLAB and Cheese Flavor Formation

Raw milk cheeses are considered to have better fla-
vor than those made from pasteurized milk, indicating
that the raw milk microflora (including NSLAB) and
perhaps heat-sensitive enzymes have an effect on
flavor.

Because NSLAB grow to considerable numbers in
cheese and many cheeses are ripened for long periods,
the effect that selected strains of NSLAB have on
cheese flavor development has been intensively stud-
ied. The early results (reviewed by Peterson and Mar-
shall, 1990) were equivocal. This may have been due
to the lack of reliable selective media for lactobacilli,
the inability to distinguish between the adventitious
NSLAB and those deliberately added, and the fact that
many mother and bulk cultures would have been con-
taminated with lactobacilli, leading to control cheese
with high levels of lactobacilli. Results from recent
studies generally show a positive effect of FHL on fla-
vor (Puchades et al., 1989; Broome et al., 1990;
McSweeney et al., 1993; Lynch et al., 1996; Swear-
ingen et al., 2001; Antonsson et al., 2003).

Enterococci, particularly Enterococcus faecalis, En-
terococcus faecium, and Enterococcus casseliflavus, are
found in high numbers (∼107cfu/g) in many cheeses
made around the Mediterranean and are thought to
have a positive influence on flavor (Franz et al., 1999).
They grow during Cheddar cheese manufacture, and,
although some of them showed increased proteolysis,
there was no statistical effect on flavor (Rea et al.,
2004). Pediococcus pentosaceus improves the flavor of
the soft Greek cheese, Teleme, which is made with
yogurt starter cultures (Tzanetakis et al., 1991).

Autolysis by starter bacteria and subsequent release
of intracellular enzymes is considered important in
developing cheese flavor. Little work has been done
on autolysis by NSLAB but little lysis occurs during
cheese ripening (Fox et al., 2000). In vitro, more autoly-
sis occurs in exponential phase cells of Lb. casei than in
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stationary phase cells (Kang et al., 1998). Bacteriocins
also involve cell lysis but their potential role in causing
lysis of NSLAB during cheese ripening has not been
considered except for the report of Ryan et al. (1996),
who showed that the use of a bacteriocin-producing
starter prevented the growth of NSLAB in cheese. Cell
lysis by virulent phage for Lb. plantarum and Lb. casei
has been reported (Kashige et al., 2000; Capra et al.,
2006). The effect of both bacteriocins and phage on
lysis of FHL during cheese ripening on flavor develop-
ment needs to be evaluated.

Yvon et al. (1998) showed that addition of α-keto-
glutarate (α-KG) to cheese curd increased glutamate
production, decreased the concentration of other
amino acids, and improved the aroma (the cheese was
not tasted). This has led to considerable emphasis on
flavor formation from amino acid metabolism, particu-
larly methionine, the major S-containing amino acid
in milk proteins. Sulfur-containing compounds (e.g.,
methanethiol, dimethyl sulfide, trimethyl sulfide) con-
tribute to the cheesy, cabbagy, and garlic flavors of
cheese. These compounds are produced in very small
amounts but they have very low flavor threshold levels.
Methanethiol is formed in 2 ways from methionine:
directly via a methionine-γ-lyase (which has been puri-
fied from B. linens and Lc. lactis) or indirectly through
a methionine amino transferase (AT). Only 5 out of
22 strains of Lb. plantarum and 2 out of 7 strains of
Lb. casei showed AT activity (Amarita et al., 2001),
which also requires an amino group acceptor. α-Keto-
glutarate produced from glutamate by glutamate de-
hydrogenase (GDH) is considered the most important
source and its formation the rate-limiting step in
cheese ripening.

Reports on GDH activity by cheese-associated bacte-
ria are limited. Tanous et al. (2002) found GDH in 4
of 10 strains of Lb. casei and 13 of 14 strains of Lb.
plantarum; however, it was not determined if the pro-
ducing strains enhanced flavor production in cheese.
In vitro, flavor formation by Lc. lactis and GDH-con-
taining lactobacilli has been shown with lactobacilli
producing α-keto and hydroxyl acids from phenylala-
nine, leucine, and methionine in the presence of gluta-
mate from which the lactococci produced flavorful car-
boxylic acids (Kieronczyk et al., 2003). It would be
interesting to study the effects of an FHL containing
both AT and GDH activities on cheese ripening.

After vanillin, benzaldeyde is the second most im-
portant flavor compound in the flavor industry (Nierop
Groot and de Bont, 1998). Lactobacillus plantarum
produces it by transaminating phenylalanine to phe-
nylpyruvate, from which benzaldehyde is produced by
chemical degradation. Addition of Cu2+ also resulted
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Table 1. Genome sequencing projects for dairy-related lactic acid bacteria and other species

Genome size Public
Species Strain (Mb) Project sponsor1 access?1

Lactobacillus acidophilus ATCC700396 2.0 Dairy Management, Inc. and Rhodia, Inc. (US) No
Lb. brevis ATCC 367 2.0 JGI-LABGC (US) Yes
Lb. casei ATCC 334 2.9 JGI-LABGC (US) Yes
Lb. casei BL23 2.6 INRA (FRA) No
Lb. delbrueckii ssp. bulgaricus ATCCBAA-365 2.3 JGI-LABGC (US) Yes
Lb. delbrueckii ssp. bulgaricus ATCC11842 2.3 INRA and Genoscope (FRA) No
Lb. delbrueckii ssp. bulgaricus DN-100107 2.1 Danone Vitapole (FRA) No
Lb. gasseri ATCC 33323 2.0 JGI-LABGC (US) Yes
Lb. helveticus CNRZ32 2.4 Dairy Management, Inc. and Chr. Hansen, Inc. (US) No
Lb. helveticus DPC 4571 Not reported Teagasc and University College, Cork (IRL) No
Lb. johnsonii NCC533 2.0 Nestlé (CHE) Yes
Lb. plantarum WCFS1 3.3 Wageningen Center for Food Sciences (NLD) Yes
Lb. rhamnosus HN001 2.4 Fonterra Research Center, NZ No
Lactococcus lactis ssp. cremoris SK11 2.3 JGI-LABGC (US) Yes
Lc. lactis ssp. cremoris MG1363 2.6 Univ. Groningen (NLD); INRA (FRA) No
Lc. lactis ssp. lactis IL1403 2.3 INRA and Genoscope (FRA) Yes
Leuconostoc mesenteroides ATCC 8293 2.0 JGI-LABGC (US) Yes
Pediococcus pentosaceus ATCC 25745 2.0 JGI-LABGC (US) Yes
Streptococcus thermophilus LMD-9 1.8 JGI-LABGC (US) Yes
S. thermophilus LMG18311 1.9 Univ. Catholique de Louvain (BEL) No
S. thermophilus CNRZ1066 1.8 INRA (FRA) No
Other dairy-related bacteria:
Bifidobacterium longum NCC2705 2.3 Nestlé (CHE) Yes
B. longum DJ010A 2.1 JGI-LABGC (US) Yes
Bifidobacterium breve NCIMB8807 2.4 University College, Cork (IRL) No
Brevibacterium linens ATCC9174 3.0 JGI-LABGC (US) Yes
Propionibacterium freundenreichii ATCC6207 2.6 DSM Food Specialties (NLD) No

1As of September 1, 2004. Country codes: US = United States; FRA = France; IRL = Ireland; CHE = Switzerland; NLD = Netherlands;
NZ = New Zealand; BEL = Belgium. JGI-LABGC = Department of Energy Joint Genome Institute and Lactic Acid Bacteria Genomics
Consortium.

in production of phenyl acetate, mandelate, and phe-
nylglyoxylate from the phenylpyruvate.

Chemical degradation of the products of aromatic
amino acid metabolism can impart off-flavors to
cheese. Examples include skatole produced from in-
dole-3-lactate, which, in turn is produced from trypto-
phan and phenyl acetate, and phenethanol and phe-
nylpropionate produced from phenylalanine (Gumalla
and Broadbent, 1999, 2001).

Lactobacillus plantarum isolated from silage also
has the ability to produce antifungal compounds in-
cluding 3 phenyllactate and 2 cyclic dipeptides (Strom
et al., 2002). Whether this occurs in cheese has not
been determined.

Insights from Genomic Studies on Dairy LAB

Genomes of LAB contain both plasmid and chromo-
somal DNA (Broadbent, 2001). The characterization
of plasmids in LAB has been an ongoing area of study
for the past 30 yr (Broadbent, 2001). Characterization
of LAB chromosomes began in the early 1970s; how-
ever, the most exciting developments in LAB genomics
are now being fueled by nucleotide sequence informa-
tion for complete genomes. Currently, the genome se-
quence is known or is being determined for more than
20 LAB (Table 1). The value of genome sequence infor-
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mation for dairy-related LAB cannot be overstated.
This section will cover briefly some of the advances
that the availability of genome sequences has already
made possible.

Because of their economic relevance, many of these
sequences are being mined for intellectual property
and are not yet available to the general scientific com-
munity. Nonetheless, nucleotide sequence data is pub-
licly available for more than half of the sequenced LAB
strains (Makarova et al., 2006; Table 1), and 10 of the
14 publicly accessible sequences were contributed as
part of a joint venture between the Department of
Energy Joint Genome Institute and the US-based Lac-
tic Acid Bacterial Genomics Consortium. Their mis-
sion is to advance academic and industrial research
on LAB through release of genome sequence informa-
tion for microorganisms prominently associated with
the fermented foods industry.

There are 2 main foci in this section. The first is
how the availability of genomic sequences has pro-
vided new insights to how LAB genomes have changed
during evolution in the milk environment. The second
is how genomic information can be used to further our
understanding of dairy fermentations; this section is
based on research conducted in collaboration between
J. Steele and J. Broadbent.
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It is thought that LAB emerged 1.5 to 2.0 billion
years ago, whereas the milk environment is a rela-
tively recent environment. The milk environment cer-
tainly arose after the emergence of mammals (approxi-
mately 60 million years ago) and more likely became
a viable environment for nonpathogenic microorgan-
isms around the time that man domesticated dairy
animals (approximately 10,000 yr ago; Fox and
McSweeney, 2004). The availability of dairy LAB geno-
mic sequences has shed new light on the evolution of
these organisms to the milk new environment. Milk
is a nutritionally rich, stable environment containing
lactose as the primary carbohydrate and caseins as a
rich potential source of amino acids; milk also contains
most vitamins and minerals. Examination of dairy
LAB genomes shows that gene loss or inactivation as
well as metabolic simplification is a central component
of the evolution of these organisms to milk (Bolotin et
al., 2001, 2004; Makarova et al., 2006; van de Guchte
et al., 2006). This is particularly true in genes involved
in amino acid biosynthesis. Selective pressure during
growth in milk has favored microorganisms that are
capable of obtaining amino acids from caseins via their
relatively complex proteolytic enzyme system and loss
or inactivation of genes for de novo biosynthesis of
amino acids. Additionally, it is clear that horizontal
gene transfer, a process by which an organism trans-
fers genetic material to different organisms, has
played a significant role in the evolution of these or-
ganisms. For example, the ability to utilize lactose as
an energy source has evolved independently in differ-
ent dairy LAB via horizontal gene transfer. The avail-
ability of dairy LAB genomic sequences supports the
view that these organisms have evolved from other
LAB via gene loss or inactivation, as well as via hori-
zontal gene transfer, rapidly resulting in organisms
that are specialists for growth in milk (Bolotin et al.,
2004; Makarova et al., 2006; van de Guchte et al.,
2006).

The availability of genomic sequences has also al-
lowed researchers to rapidly discern the metabolic po-
tential of the sequenced strains. For example, because
proteolysis plays such a critical part in cheese ripen-
ing, the Steele research group and collaborators spent
more than a decade examining the proteolytic system
of Lactobacillus helveticus CNRZ32 (Christensen et
al., 1999; Broadbent and Steele, 2007). The outcome
of these efforts was the characterization of 12 CNRZ32
genes that encode proteolytic enzymes (Table 2). De-
spite these concerted efforts, initial annotation of the
CNRZ32 genome sequence revealed a large number
of additional genes in CNRZ32 whose products are
predicted to contribute to the proteolytic enzyme sys-
tem of this bacterium (Table 2).
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From our perspective, such data underscore both
the power of genome sequence information for applied
bacteriology, and the challenges one must face in inter-
preting and applying that information. Although se-
quencing efforts expanded the genetic database for the
CNRZ32 proteolytic enzyme system by about 5-fold,
efforts to confirm and characterize all the new gene
assignments will require more time and resources.
Nonetheless, functional analysis of the newly discov-
ered endopeptidase genes has already identified en-
zymes with important roles in the hydrolysis of bitter
peptides in cheese (Sridhar et al., 2005).

The availability of multiple genome sequences
within a species allows for the study of strain-specific
traits. For example, a comparison of the complete ge-
nome sequences of 2 strains of Lactobacillus del-
brueckii ssp. bulgaricus identified regions involved in
bacteriophage resistance, a trait known to vary from
strain to strain.

The availability of genome sequences also allows
studies to follow global gene regulation via DNA mi-
croarrays. A major strength of this technology is that
it provides a nonbiased global view of an organism’s
transcriptional response to an environment of interest.
This unbiased holistic view consistently yields unex-
pected observations that ultimately lead to the identi-
fication of genes with critical functions in the physio-
logical system of interest. Our initial study investi-
gated expression of these genes during growth in milk
compared with a rich laboratory medium (Smeianov
et al., 2007). The array data showed growth of Lb.
helveticus CNRZ32 in milk induced genes encoding
cell-envelope proteinases, oligopeptide transporters,
and endopeptidases, as well as enzymes for lactose,
cysteine, and hypothetical phosphoserine utilization
pathways, de novo synthesis, and salvage pathways
for purines and pyrimidines, and other functions. The
identification of a pathway for the utilization of serine-
phosphate (Figure 1) during growth of Lb. helveticus
CNRZ32 in milk was an unexpected. However, given
the relative abundance of serine-phosphate residues
in casein, this pathway likely represents a readily ex-
plained adaptation of Lb. helveticus to the milk envi-
ronment.

Access to genomic information has provided re-
searchers with an unprecedented opportunity to refine
old, and develop new, hypotheses concerning how LAB
effect the conversion of milk into a variety of fermented
dairy products. However, testing these hypotheses is
likely to take several years. Then, of course, perhaps
the greatest challenge remains—taking this new
knowledge and converting it into new or improved
products for the consumer.
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Table 2. Components of the Lactobacillus helveticus CNRZ32 proteolytic enzyme system: A look before and
after genome sequence determination

Genes identified and characterized Genes identified upon completion
before sequencing project of the draft genome sequence

Proteinases
prtH prtH2 plus 9 additional proteases

Endopeptidases
pepE, pepO, pepO2 endopeptidases pepE2, pepF, pepO3, plus 2 glycoproteins

Aminopeptidases
pepC, pepN, pepX pepC2 plus 7 additional aminopeptidases

Di-Tripeptidases
pepD, pepI, pepQ, pepR pepD2, pepD3, pepD4, pepQ2, pepT1, and pepT2

Other
Oligo- and di-tripeptide transport systems:
oppA, oppA2, oppB-D, oppF, and dtpA, dtpA2, and dtpT
Multiple amino acid transporters

Engineering Culture Attributes

Metabolic engineering of cells is founded upon the
power to precisely establish or redirect cellular func-
tions through DNA manipulation. Today, the ability
to genetically manipulate or engineer animals, plants,
and microorganisms to manufacture, modify, or im-
prove products or processes has grown into a multibil-
lion dollar enterprise that has revolutionized the phar-
maceutical, chemical, and agricultural industries.
Many of the most exciting and successful applications
involve microbial products. Although the use of recom-
binant DNA (rDNA)-derived microbial products in ag-
ricultural and food systems is commonplace, a similar
situation does not apply to the use of live, rDNA-con-
taining microbial cells. When we consider potential
applications for genetically modified dairy cultures, it

Figure 1. Proposed metabolic pathway for the metabolism of ser-
ine-phosphate by Lactobacillus helveticus CNRZ32. α-KG = α-keto-
glutarate; SerA = phosphoglycerate dehydrogenase; SerC = phospho-
serine aminotransferase; pgm = phosphoglycerate mutase.
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is important to recognize a few key principles. First,
starter technology in dairy foods began in the late 19th
century, and a long history of their safe application in
human food has afforded GRAS (Generally Recognized
as Safe) status to these bacteria. Moreover, current
knowledge of starter physiology and genetics has al-
ready identified clear strategies to improve the indus-
trial performance of these microbes. In some cases,
genetic strain improvements can be effected by means
that do not require the introduction and expression of
rDNA molecules. Two examples of genetic improve-
ments that reflect these criteria and have already been
implemented by industry involve strategies to enhance
phage-resistance and diacetyl production in lactococci.

Bacteriophage Resistance

Bacteriophages (phage) are viruses that attack and
can destroy bacterial cells. The inhibitory effect of
phages on dairy fermentations has been recognized for
more than 60 yr, and their destructive impact has
focused worldwide attention on molecular genetics and
evolution of LAB phages. Because industrial fermenta-
tions with Lc. lactis and Strep. thermophilus starters
suffer the greatest incidence of loss, current under-
standing of LAB phage biology is based largely on
phages infecting these 2 species (Garvey et al., 1995;
Brüssow et al., 1998). In lactococci, bacteriophage re-
sistance is one of several industrially important traits
that may be encoded by plasmid DNA. Fortuitously,
many lactococcal phage-resistance plasmids can also
be transferred into other strains of Lc. lactis by conju-
gation (Klaenhammer and Fitzgerald, 1994). Because
conjugation is a natural form of gene transfer, dairy
LAB that are genetically improved by this method by-
pass most of the regulatory and sociopolitical issues
associated with rDNA technology. Sanders and co-
workers (1986) were the first to demonstrate the feasi-
bility of introducing plasmid-coded phage defense
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mechanisms into commercial Cheddar cheese starter
bacteria by conjugation, and this strategy has been
emulated by other researchers around the world
(Klaenhammer and Fitzgerald, 1994). As a result, con-
jugation-derived, phage-insensitive dairy starter cul-
tures have been in commercial use for many years.

Although conjugation of native phage-resistance
plasmids has been of great benefit to the dairy indus-
try, the flexibility of this strategy is clearly limited to
plasmids that can be transferred by this process. In
some countries, this limitation has been overcome by
electroporation with native phage-resistance plas-
mids, and starter lactococci that have been improved
by this process are in commercial use.

Metabolic Engineering for Diacetyl Production

Diacetyl is an industrially important compound
used to impart buttery flavor and aroma to many foods.
Diacetyl is derived from citrate metabolism by LAB,
and knowledge of the enzymology and genetics of ci-
trate metabolism has identified several strategies to
metabolically engineer Lc. lactis strains for enhanced
diacetyl production (deVos, 1996). One effective ave-
nue toward this end involves inactivation of the gene
encoding α-acetolactate decarboxylase (aldB), the en-
zyme that converts α-acetolactate to acetoin (Figure
1). This mutation promotes an accumulation of α-acet-
olactate, the immediate precursor to diacetyl, which
in turn leads to an increased level of diacetyl in the
growth medium.

Although aldB inactivation can certainly be
achieved by rDNA methodology (Swindell et al., 1996),
naturally occurring aldB mutants can be isolated by
growth selection in a medium containing leucine, but
not valine. This approach is possible because α-aceto-
lactate is also an intermediate in leucine and valine
biosynthesis, and leucine acts as an allosteric activator
of α-acetolactate decarboxylase (Goupil-Feuillerat et
al., 1997). Thus, wild-type lactococci cannot grow in
this medium because Leu stimulates the enzymatic
conversion of α-acetolactate to acetoin, leaving none
to support Val biosynthesis. However, aldB mutants
are able to synthesize Val in the presence of Leu, and
so will continue to grow. Interestingly, industrial ap-
plication of this strategy was initially limited by the
finding that most commercial Lc. lactis strains are
auxotrophic for branched-chain amino acids. To over-
come this shortcoming, Curic et al. (1999) transformed
industrial strains with an rDNA plasmid that encoded
enzymes for branched-chain amino acid biosynthesis.
Selection for naturally occurring aldB mutants among
transformants can then be performed as outlined
above, and food-grade variants of those cells are subse-
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quently obtained by plasmid curing. Starter bacteria
derived by this strategy are natural mutants that lack
any foreign DNA, and this feature has facilitated their
commercial application in some countries, including
the United States.

Current Application of rDNA in Starter Technology

Although cells containing rDNA molecules are not in
commercial use, rDNA-based experiments in research
laboratories continue to fuel important advancements
in culture technology. This is because rDNA methods
allow for the construction of strain derivatives that
differ only by the action (null mutants) or activity (ex-
pression mutants) of a particular enzyme or metabolic
pathway of interest. By comparing the phenotype of
the wild-type bacterium to its isogenic derivative, the
role of that enzyme or pathway in a given process can
often be clearly defined. The complexity of the LAB
proteolytic enzyme system, for example, has long con-
founded efforts to determine the role of individual en-
zymes in cheese proteolysis and maturation. However,
construction of isogenic peptidase or proteinase mu-
tants has allowed researchers to systematically deter-
mine the contribution of several enzymes on cell
growth and cheese chemistry (Christensen et al., 1999;
Sridhar et al., 2005; Broadbent and Steele, 2006). With
this type of knowledge, dairy technologists can often
use strain selection or screening methods to identify
starter bacteria that already possess various traits
of interest.

Media Development for Selective
Enumeration of LAB

The health benefits derived by the consumption of
foods containing acidophilus and bifidus products are
well documented and more than 90 probiotic products
are available worldwide. A number of health benefits
have been claimed for probiotic bacteria (defined as
live microorganisms, which, when administered in ad-
equate amounts, confer a health benefit on the host)
such as Lb. acidophilus, Bifidobacterium spp., and Lb.
casei. Because of this, these organisms are increas-
ingly incorporated into dairy foods.

To provide health benefits, the suggested level for
probiotic bacteria is ≥106 cfu/g of product (Shah, 2000).
However, studies have shown low viability of probiot-
ics in market preparations (Shah et al., 1995; Shah,
2000). The need to monitor survival of Lb. acidophilus
and Bifidobacterium in fermented products has often
been neglected, with the result that a number of prod-
ucts reach the market containing low concentrations
of viable bacteria (Shah et al., 1995). To assess viabil-
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ity and survival of probiotic bacteria, it is important to
have good methods for selective enumeration of these
probiotic organisms. Several media for selective enu-
meration of Lb. acidophilus and Bifidobacterium spp.
have been proposed (Dave and Shah, 1996; Shah,
2000). However, most of these methods are based on
pure cultures of these organisms. Similarly, there are
only a few reports that have described selective enu-
meration of Lb. casei in the presence of other probiotic
organisms and yogurt starter bacteria (Strep. ther-
mophilus and Lb. delbrueckii ssp. bulgaricus; Cham-
pagne et al., 1997; Ravula and Shah, 1998). An im-
portant parameter in monitoring viable organisms to
assess product quality is the ability to count Lb. acido-
philus, Bifidobacterium spp., and Lb. casei differen-
tially. Selective enumeration of Lb. reuteri, Lb. plan-
tarum, Lb. rhamnosus, and Propionibacterium has not
been studied extensively.

Selective Enumeration of Lb. acidophilus,
Bifidobacterium spp., Lb. casei, Lb. rhamnosus,
and Propionibacterium

Yogurt is made from the symbiotic growth of Strep.
thermophilus and Lb. delbrueckii ssp. bulgaricus.
These bacteria do not survive the gastric passage or
colonize the gut. Hence, the recent trend is to add
Lb. acidophilus, Bifidobacterium spp., and Lb. casei
to yogurt. Lactobacillus johnsonii and Lactobacillus
crispatus have also been used in probiotic products.
In some products such as cheese-based dips, the trend
is to use other probiotic cultures such as Lb. rhamno-
sus and Propionibacterium.

Several media have been developed for differential
enumeration of yogurt culture organisms (Lb. del-
brueckii ssp. bulgaricus and Strep. thermophilus), in-
cluding Lee’s agar (Lee at al., 1974), and reinforced
clostridial agar adjusted to pH 5.5 (Johns et al., 1978).
Several media have been suggested for the enumera-
tion of Lb. acidophilus, including bile medium (Collins,
1978), Rogosa agar, MRS medium containing maltose,
raffinose, or melibiose in place of dextrose (Hull and
Roberts, 1984), cellobiose-esculin agar (Hunger, 1986),
and agar medium based on X-Glu (Kneifel and
Pacher, 1993).

Similarly, several selective media have been devel-
oped for enumeration of pure cultures of Bifidobacter-
ium spp., including nalidixic acid-neomycin sulfate-
lithium chloride-paromomycin sulfate (NNLP) agar
(Teraguchi et al., 1978; Munoa and Pares, 1988; Bur-
ford, 1989; Wijsman et al., 1989; Sozzi et al., 1990;
Laroia and Martin, 1991; Onggo and Fleet, 1993; Ar-
royo et al., 1994). However, these media may not be
suitable for selective enumeration of Bifidobacterium
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spp. in the presence of Lb. acidophilus and yogurt
culture organisms. Furthermore, differences exist
among the strains of the same species with respect to
sugar fermentation characteristics and tolerance to
low pH and bile. There is concern that some media
that contain bile or antibiotics might also restrict the
growth of Lb. acidophilus or Bifidobacterium and that
counts obtained are not representative of the actual
number of viable cells present in the product.

Selective enumeration of Lb. casei in yogurt-type
fermented milks containing probiotic bacteria based
on 15°C incubation temperature and a 14 d incubation
time was reported by Champagne and coworkers
(1997). However, an incubation time of 14 d is not
practical if the results are required in a short time.

Lankaputhra et al. (1996) proposed the use of MRS-
maltose agar for selective enumeration of Lb. acido-
philus in the presence of yogurt organisms in a product
that does not contain Bifidobacterium spp. Similarly,
Lankaputhra and Shah (1996) developed a simple
method for selective enumeration of Lb. acidophilus
in the presence of yogurt starter bacteria and Bifido-
bacterium spp. based on differences in sugar fermenta-
tion patterns. Dave and Shah (1996) evaluated 15 me-
dia to determine their suitability for selective enumer-
ation of Strep. thermophilus, Lb. delbrueckii ssp.
bulgaricus, Lb. acidophilus, and Bifidobacterium us-
ing 5 to 6 strains of each of the 4 organisms. Streptococ-
cus thermophilus (ST) agar was found to be suitable
for selective enumeration of Strep. thermophilus under
aerobic incubation at 37°C for 24 h. de Man, Rogosa,
and Sharpe agar at pH 5.2 or RCA at pH 5.3 was
recommended for the enumeration of Lb. delbrueckii
ssp. bulgaricus; MRS-maltose agar could be used for
enumerating total counts of Lb. acidophilus and Bi-
fidobacterium. For selective enumeration of Lb. acido-
philus, MRS-salicin agar or MRS-sorbitol agar could
be used. For selective enumeration of Bifidobacterium,
MRS-NNLP agar has been found to be suitable. How-
ever, checking the growth of pure cultures of Bifido-
bacterium in this medium is recommended before
adopting them for enumeration purposes in the pres-
ence of yogurt cultures and Lb. acidophilus.

There is little information on selective enumeration
of Lb. casei in yogurt and fermented milk drinks, which
may contain yogurt starter organisms and probiotic
bacteria. A selective medium known as Lb. casei (LC)
agar has been developed by Ravula and Shah (1998) for
enumeration of Lb. casei populations from commercial
yogurts and fermented milk drinks that may contain
yogurt starter bacteria (Strep. thermophilus and Lb.
delbrueckii ssp. bulgaricus), Lb. acidophilus, Bifido-
bacterium spp., and Lb. casei. The composition of LC
agar is shown in Table 3.
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Table 3. Composition of Lactobacillus casei (LC) agar1

Ingredients Amount (g/L)

Bacteriological peptone 10.00
Yeast extract 1.00
Lab Lemco 4.00
KH2PO4 2.00
Sodium acetate (trihydrate) 3.00
Tri-ammonium citrate 1.00
Magnesium sulfate (hepta hydrate) 0.20
Magnesium sulfate (tetra hydrate) 0.05
Acid casein hydrolysate 1.00
Tween 80 1.00
Bacteriological agar 12.00

1Source: Ravula and Shah (1998).

Tharmaraj and Shah (2003) evaluated 19 bacterio-
logical media to assess their suitability to selectively
enumerate Lb. delbrueckii ssp. bulgaricus, Strep. ther-
mophilus, Lb. casei, Lb. rhamnosus, Lb. acidophilus,
Bifidobacterium, and Propionibacterium. Bacteriologi-
cal media evaluated included ST, pH-modified MRS,
MRS-vancomycin, MRS-bile, MRS-NaCl, MRS-lith-
ium chloride, MRS-NNLP, RCA, sugar (including
maltose, galactose, sorbitol, mannitol, esculin)-based,
sodium lactate, arabinose, raffinose, xylose, and LC
agars. Incubations were carried out under aerobic and
anaerobic conditions at 27, 30, 37, 43, and 45°C for 24
and 72 h and 7 to 9 d. The use of ST agar and aerobic
incubation at 37°C for 24 h was suitable for Strep.
thermophilus, whereas Lb. delbrueckii ssp. bulgaricus
could be enumerated using MRS agar (pH 4.58 or 5.20)
under anaerobic incubation at 45°C for 72 h. The use
of MRS-vancomycin agar and anaerobic incubation at
43°C for 72 h was suitable to enumerate Lb. rhamno-
sus, and MRS-vancomycin agar and anaerobic incuba-
tion at 37°C for 72 h were selective for Lb. casei. Lacto-
bacillus acidophilus could be enumerated using MRS
agar at 43°C for 72 h or basal agar supplemented with
maltose at 43°C for 72 h or basal-sorbitol agar at 37°C
for 72 h, under anaerobic conditions. Bifidobacterium
could be enumerated on MRS-NNLP agar under an-
aerobic incubation at 37°C for 72 h. Propionibacterium
could be enumerated on sodium lactate agar under
anaerobic incubation at 30°C for 7 to 9 d. A subtraction
method was most suitable for counting Propionibacte-
rium in the presence of other LAB from a product. For
this method, counts of LAB at d 3 on sodium lactate
agar under anaerobic incubation at 30°C were sub-
tracted from counts at d 7 of LAB and Propionibacte-
rium (Table 4).

In summary, MRS-salicin or MRS-sorbitol agar can
be used for selective enumeration of Lb. acidophilus
if Lb. casei is not added to the product. However, if
Lb. casei is added to the product, then MRS-sorbitol
agar or MRS-salicin agar can be used to obtain counts
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of Lb. acidophilus and Lb. casei, and LC agar can be
used to obtain a total count of Lb. casei. The counts of
Lb. casei can be subtracted from the total population
of Lb. acidophilus and Lb. casei enumerated using
MRS-salicin or MRS-sorbitol agar. Bifidobacterium
could be enumerated on MRS-NNLP agar under an-
aerobic incubation at 37°C for 72 h. Propionibacterium
could be enumerated on sodium lactate agar under
anaerobic incubation at 30°C for 7 to 9 d. The ST agar
could be used for selective enumeration of Strep. ther-
mophilus, MRS agar (pH 5.2) is suitable for Lb. del-
brueckii ssp. bulgaricus.

THE ROLE OF PROBIOTICS IN MODULATION
OF IMMUNE FUNCTION

Probiotics and Gastrointestinal Immune Function

The term “probiotic,” although not legally defined in
many countries, refers to “microbial preparations that
when ingested exert a positive influence on host health
and physiology” (Tannock, 2002). Today, lactobacilli
and bifidobacteria are the primary probiotics used in
fermented dairy foods such as yogurt and dietary sup-
plements. About a century ago, Metchnikoff (1907)
wrote in his book, The Prolongation of Life, that con-
sumption of fermented dairy products by LAB resulted
in improved health and longer life. Today, an increas-
ing number of health foods, functional foods, and phar-
maceutical preparations are promoted with health
claims based on the probiotic characteristics of some
of these bacteria. It is widely accepted that the gastro-
intestinal microflora plays an important role in the
health of the host and possesses immunomodulating
capacity. However, exactly how a particular bacterial
species contributes to the development of the immune
system has not been systematically addressed. Probi-
otic ingestion is thought to alter the gastrointestinal
microflora by providing bacterial cells to the gut eco-
system, and probiotics have been suggested as poten-
tial candidates for immune modulation. Various stud-
ies have been conducted on the effect of probiotic bacte-
ria on immune function. However, many of the findings
have been inconclusive or conflicting in the absence of
clear mechanistic data. Improvement of the immune
system due to probiotics have been attributed to
strengthening of nonspecific defenses against infec-
tion, increased phagocytic activity of white blood cells,
increase in IgA production, proliferation of intraepi-
thelial lymphocytes, adjuvant effect in antigen-specific
immune responses, regulation of the balance of T-
helper 1 (Th1) and T-helper 2 (Th2) cells (Mercenier
et al., 2003). It is thought that the mechanism by which
probiotics influence the immune system may be the
ability to differentially modulate expression of cytok-
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Table 4. Media recommended for selective enumeration of Streptococcus thermophilus, Lactobacilus delbrueckii ssp. bulgaricus, Lactobacillus
acidophilus, Bifidobacterium, Lactobacillus casei, Lactobacillus rhamnosus, and Propionibacterium and viable counts of in a mixture of
bacteria

Viable
count

Agar1 Bacteria Incubation conditions Colony morphology (cfu/mL)

ST agar S. thermophilus Aerobic, 37°C, 24 h 0.1–0.5 mm, round yellowish 3.9 × 104

MRS agar (pH 4.58) L. delbrueckii ssp. bulgaricus Anaerobic, 45°C, 72 h 1.0 mm, white, cottony, rough, irregular 7.0 × 107

MRS-sorbitol agar L. acidophilus Anaerobic, 37°C, 72 h Rough, dull, small (0.1–0.5), brownish 10.0 × 107

MRS-NNLP agar Bifidobacterium Anaerobic, 37°C, 72 h 1 mm, white, smooth, shiny 7.0 × 107

MRS-vancomycin agar2 L. casei Anaerobic, 37°C, 72 h 1.0 mm, white shiny, smooth 5.3 × 107

MRS-vancomycin agar L. rhamnosus Anaerobic, 43°C, 72 h 1.0–2.0 mm, white shiny, smooth 7.6 × 107

Sodium lactate agar Propionibacterium3 Anaerobic, 30°C, 7 to 9 d 1.0–2.5 mm, dull brown, lighter margin 4.9 × 107

1ST = Streptococcus thermophilus; MRS = de Man, Rogosa, and Sharpe; MRS-NNLP = MRS plus nalidixic acid, neomycin sulfate, lithium
chloride, and paromycin sulfate;

2If L. rhamnosus was not present; however, if L. rhamnosus was present, then subtraction methods could be used; that is, subtracting
L. rhamnosus counts on MRS-vancomycin agar under anaerobic incubation at 43°C for 72 h from total counts of L. casei and L. rhamnosus
obtained in MRS-vancomycin agar under anaerobic incubation at 37°C for 72 h).

3Subtraction method could also be used to determine the counts of Propionibacterium; that is, counts of L. casei and L. rhamnosus
(anaerobic incubation, 30°C, 72 h) could be subtracted from counts of L. casei, L. rhamnosus, and Propionibacterium (anaerobic incubation,
30°C, 7 d).

ines and costimulatory molecules (Miettinen et al.,
1996; Tejada-Simon et al., 1996a,b; Marin et al.,
1997a,b; Christensen et al., 2002). More recently, pro-
biotics have been reported to modulate innate and ac-
quired immune control and contribute to more finely
tuned Th1 and Th2 immune responses. Of particular
interest have been IL-10 and IL-12 as well as the ex-
pression of costimulatory molecules B7-1 (CD80) and
B7-2 (CD86). Interleukins IL-10 and IL-12 exert oppo-
site regulatory effects; IL-12 is a Th1-skewing cytokine
that elicits IFN-γ production by T cells and natural
killer cells (Heufler et al., 1996), whereas IL-10 is an
antiinflammatory cytokine that suppresses IL-12 pro-
duction and thus IFN-γ production, favoring a Th2
response (Heufler et al., 1996). Interleukin 10 can also
down-regulate presentation of an antigen by blocking
translocation of antigen-major histocompatibility com-
plex (MHC) class II complex to the surface of the anti-
gen-presenting cell. Interleukin 6, another important
regulatory cytokine, is produced by a wide variety of
cells with antigen-presenting cells (APC) representing
its primary source. It provides for terminal differentia-
tion of B cells into plasma cells and has been reported
to polarize naı̈ve CD4+ T cells to effector Th2 cells
(Rincon et al., 1997). Tumor necrosis factor-α (TNF-
α), another cytokine produced by macrophages, is an
important regulatory mediator (Goldsby et al., 2000).

Antigen-Presenting Cells

Antigen-presenting cells such as dendritic cells (DC)
and macrophages are key components for Th1/Th2 im-
mune responses. Dendritic cells are distributed in
most tissues such as the mucosa of the GI tract (where
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they are found in Peyer’s patches), lamina propria,
and draining mesenteric lymph nodes; they are the
principal stimulators of naı̈ve T helper cells. The deli-
cate balance between Th1 and Th2 immunity, as well
as tolerance (Th3), is thought to be pivotally controlled
by stimulating DC. The ability of activated DC to
prime T-cell activity is, in addition to expression of
MHC antigen complexes, due to DC expression of cy-
tokines and costimulatory molecules that are up-regu-
lated during maturation. The discriminative factors in
this respect are production of the strong Th1-skewing
cytokine, IL-12, as well as the expression of the costi-
mulatory molecules B7-1 (CD80) and especially B7-2
(CD86). Dendritic cells found in the GI tract are close
to the GI microbial environment. Thus, the intestinal
flora including probiotics may exert immunoregula-
tory effects through modulation of the Th1/Th2/Th3-
promoting capacity of DC in the gut.

Like DC, macrophages are professional APC. They
are capable of presenting antigen CD4+ T cells with
class II MHC molecules. They also provide costimula-
tory signals needed to provide T-cell activation that
leads to proliferation and differentiation. However,
they differ from DC in their ability to display antigen
and in their ability to provide costimulatory signals.
Macrophages are activated by phagocytosis of bacteria
or by bacterial products such as LPS or by IFN-γ. Acti-
vated macrophages up-regulate their expression of
class II MHC molecules and costimulatory B7 mole-
cules. Activated macrophages are common activators
of memory and effector T cells. Expression of MHC
class II, as well as a second signal provided by the
costimulatory B7 molecules CD80 and CD84, is re-
quired for effective antigen presentation. Activated
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macrophages may also secrete a variety of cytokines
(Goldsby et al., 2000). Probiotics have been shown to
differentially modulate expression and production of
cytokines by macrophages.

Toll-Like Receptors

Activation of surface receptors called toll-like recep-
tors (TLR) by bacterial components is believed to be
key for regulation of immune responses and to mediate
the link between innate and adaptive immunity. These
receptors are able to recognize microbial particles and
activate immune cells accordingly. Although the mech-
anism of TLR-mediated recognition of microbial parti-
cles is not well known, it is believed that it depends
on the innate immune system to detect the presence
of infectious microorganisms and to induce a set of
endogenous signals, such as inflammatory cytokines
and chemokines (Medzhitov and Janeway, 2000).
These signals then activate antigen-specific lympho-
cytes and induce their differentiation into effector
cells. Currently, 10 TLR have been identified (TLR1
to 10). Bacterial products activate TLR2, TLR4, TLR6,
and TLR9 (Takeda et al., 2003). Receptor TLR2 forms
a heterodimeric complex with either TLR1 or TLR6,
and responds to bacterial peptidoglycan and lipopoly-
peptides, whereas TLR4, TLR5, and TLR9 recognize
LPS, flagellin, and hypomethylated CpG-rich DNA,
respectively. In general, TLR4 has been considered the
major receptor for gram-negative bacteria, whereas
TLR2 is considered the receptor for gram-positive bac-
teria (Takeuchi et al., 1999). The TLR are connected,
via the adaptor protein MyD88, to a signal transduc-
tion mechanism that is utilized by all members of the
family. They induce similar patterns of gene expres-
sion including those involving inflammatory re-
sponses. It is becoming increasingly clear, however,
that certain signaling mechanisms are specific to indi-
vidual TLR (Horng et al., 2002; Yamamoto et al., 2002),
and different TLR agonists induce different patterns
of gene expression (Hirschfeld et al., 2001; Jones et
al., 2001; Re and Strominger, 2001).

Nuclear Factor-κB

The triggering of APC through TLR initiates a signal
transduction cascade that culminates in the activation
of transcription factors such as nuclear factor (NF)-
κB, a major player in the inflammatory immune re-
sponses of the gut. In the noninflammatory state, NF-
κB is bound to its inhibitor, IκB, and is retained in the
cytoplasm in its inactive form. When the appropriate
signal is received to activate NF-κB, phosphorylation
of IκB by IκB kinases α and β (IKKα and IKKβ) results
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in its ubiquitination and degradation. The release of
NF-κB (from the inhibited state) and its translocation
to the nucleus results in transcriptional activation of
cytokine and chemokine genes, which are important
in inflammatory responses. A number of bacterial
pathogens can activate NF-κB and thus the inflam-
matory immune responses. More recently, Neish et al.
(2000) have shown that nonpathogenic bacteria have
evolved ways to selectively attenuate this pathway and
hinder NF-κB activation. This has important implica-
tions for probiotics, in that probiotics may also be able
to abrogate NF-κB activation and block the host’s in-
flammatory responses.

Current Research

Our initial work in the area of LAB and immune
function involved evaluating representative strains of
Lactobacillus spp. (16 strains), Bifidobacterium spp.
(14 strains), and Streptococcus spp. (4 strains) on cy-
tokine production using a macrophage model (RAW
264.7 cells) and T-helper-cell model (EL4.IL-2 thy-
moma cells; Marin et al., 1997a,b, 1998). Members of
all 3 genera induced significant increases in IL-6 and
TNF-α production in unstimulated and LPS-stimu-
lated RAW 264.7 macrophage cells. Bifidobacteria and
some strains of lactobacilli also increased IL-2 produc-
tion in EL-4 T cells but required a costimulatory signal
and were less remarkable (Marin et al., 1997a,b, 1998).
In ex vivo studies in which mice were gavaged with 1
× 109 viable bacteria and peritoneal, Peyer’s patch,
and splenic leukocytes cultured in the presence and
absence of inducing agents (LPS or phorbol 12-myris-
tate-13 acetate and ionomycin), we demonstrated that
Lb. acidophilus and Lb. casei can potentiate IL-6 and
IL-12 production by peritoneal macrophages. Lactoba-
cillus acidophilus also potentiated IFN-γ and nitric
oxide production. In contrast, Lb. helveticus, Lb. gas-
seri, Lb. reuteri, and Bifidobacterium spp. attenuated
the production of IL-6, IFN-γ, and nitric oxide by peri-
toneal macrophages (Tejada-Simon et al., 1999).

We have also investigated the effects of yogurts
(with or without Bifidobacterium spp. and Lb. acido-
philus) ingestion (2 and 4 wk) on mucosal and systemic
cytokine gene expression in the mouse (Ha et al., 1999).
Relative mRNA levels in spleen, mesenteric lymph
nodes, or Peyer’s patches for the cytokines INF-γ, TNF-
α, IL-2, IL-4, and IL−6 were determined. Prolonged
feeding of some yogurts had no effect or decreased
specific cytokine mRNA, in particular, proinflamma-
tory TNF-α mRNA. Proinflammatory cytokines such
as TNF-α activate a number of important cell-medi-
ated processes that may contribute to the development
of inflammatory diseases. Thus, it may be speculated
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that suppression of TNF-α expression by yogurt inges-
tion could actually reduce the severity of these dis-
eases. In another study in which mice were fed probi-
otic yogurts containing Lb. acidophilus and Bifido-
bacterium, we observed enhanced mucosal and
systemic IgA response to the cholera toxin immunogen
compared with mice fed conventional yogurt or nonfat
dry milk control diets (Tejada-Simon et al., 1999).

We also reported on the effects of ingesting yogurts
on lymphocyte populations in Peyer’s patches and
spleens in mice fed 3 different yogurts with or without
Bifidobacterium and Lb. acidophilus (Pestka et al.,
2001). After 14 d of feeding, spleen and Peyer’s patch
lymphocytes were subjected to phenotype analysis by
flow cytometry. The percentages of CD4+ (T helper)
cells were significantly increased in the spleens from
the group of mice fed yogurt containing Bifidobacter-
ium spp. and Lb. acidophilus, and a similar trend was
observed in the remaining 2 probiotic-supplemented
yogurts. Effects on CD4+ populations were not observed
in spleens of mice fed conventional yogurt or in Peyer’s
patches of any of the 4 yogurt groups.

More recently, Christensen et al. (2002) reported on
cytokine expression and maturation of surface mark-
ers in murine DC as influenced by lactobacilli. There
were significant differences among lactobacilli strains
in their capacity to induce IL-12 and TNF-α produc-
tion. Less pronounced differences were reported
among lactobacilli in their induction of IL-6 and IL-
10. Lactobacilli strains that had the greatest ability
to induce IL-12 were most effective in up-regulating
surface MHC class II and B7-2 (CD86), indicative of
DC cell maturation. Furthermore, Lb. reuteri, which
was a poor IL-12 inducer, inhibited IL-12, IL-6, and
TNF-α induction by Lb. casei; IL-10 production was
unaffected. Both Lb. reuteri and Lb. casei induced up-
regulation of B7-2. These results provide significant
insight as to how different Lactobacillus strains exert
different DC activation patterns and potentially alter
the Th1/Th2 balance. These data suggest that differen-
tial activation of TLR on accessory cells by bacterial
components might explain the differences observed in
cytokine induction by lactobacilli and the opposing re-
sults observed in immunological studies on gut mi-
croflora used to test this hypothesis. They also provide
important insight to our previous results with cytokine
gene expression and lymphocyte populations in mice
in yogurt feeding studies.

In summary, our previous studies suggest that pro-
biotics do not share the same immunomodulatory
properties and may even have opposing effects when
used in mixed culture systems. Thus, it may be possi-
ble through appropriate selection and blending of cul-
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tures to modulate innate immune control of Th1 and
Th2 responses.

Most recently, we screened Lactobacillus salivarius
Ls 33, Lb. acidophilus NCFM, and Lb. paracasei Lpc
37 for their ability to stimulate TLR by assessing NF-
κB activation in HEK293 cells expressing a given TLR.
The activity of the LAB was tested on 7 different TLR:
TLR 2, 3, 4, 5, 7, 8, 9. Their effects were then compared
with control ligands (known TLR agonists): heat-killed
Listeria monocytogenes (TLR2), Poly(I:C) (TLR 3),
Escherichia coli K12 LPS (TLR 4), Salmonella Typhi-
murium flagellin (TLR5), Loxoribine (TLR 7), ssPolyU
(TLR8), and CpG ODN 2006 (TLR9). The 3 LAB had
significant but different stimulatory effects on human
(h) TLR2. Lactobacillus acidophilus NCFM had the
highest stimulatory effect on hTLR2, followed by Lb.
paracasei and Lb. salivarius. Their stimulatory effect
was lower than the positive control (heat-killed L. mo-
nocytogenes). No additional stimulatory effect was evi-
dent at higher levels tested. These results were con-
firmed by flow cytometry using RAW 264.7 macro-
phage cells. We also tested the hypothesis that
probiotic LAB may prevent Salmonella Dublin-in-
duced NF-κB translocation to the nucleus and prevent
signal transduction; thus, its role in the inflammatory
process in mouse intestinal epithelial cells. Western
blots showed that S. Dublin induced translocation of
NF-κB to the nucleus in 15 min, increasing at 30 min,
and decreasing significantly in 90 min. When S. Dub-
lin-treated intestinal cells were cotreated with either
Lb. casei or Lb. reuteri, the LAB able to inhibit most
of the translocation at 30 min. Lactobacillus reuteri
was more effective than Lb. casei; the nuclear translo-
cation induced by S. Dublin was inhibited approxi-
mately 50% by Lb. casei and 100% by Lb. reuteri.

We further investigated the ability of Lb. acido-
philus NCFM to induce IL-10 and IL-12 production in
vitro using RAW 264.7 macrophage cells and in vivo
using mice. Lactobacillus acidophilus NCFM was a
strong inducer of IL-12 in vitro and in murine spleen
and bone marrow macrophages suggesting that it is a
strong Th2 promoter. We also tested Lb. paracasei Lpc
37 in vitro. This organism was also a good inducer of
IL-12 but not to the extent of Lb. acidophilus NCFM.

In summary, although much has been published on
the subject of probiotics and immune function, a clear
picture has not yet fully emerged because of the strain-
specific effects, different experimental models used,
and the different immune responses studied (intesti-
nal and systemic) in the body fluids or the cells (innate
or acquired). The significance of the results varies
widely. Furthermore, with fermented dairy products,
the metabolites produced by the fermentation process
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may also exert immunomodulatory activity, which fur-
ther complicates the research.

Probiotics remain in transit in the gastrointestinal
system for variable periods, and it is commonly be-
lieved that the probiotic effect will be more likely to
occur if the bacteria remain alive for as long as possible
and are present in a sufficiently large quantity. To
achieve and maintain an effect, the probiotic must be
repeatedly administered to ensure a sufficient popula-
tion level over time.

REFERENCES

Amarita, F., T. Requena, G. Taborda, L. Amigo, and C. Pelaez.
2001. Lactobacillus casei and Lactobacillus plantarum initiate
catabolism of methionine by transamination. J. Appl. Microbiol.
90:971–978.

Antonsson, M., G. Molin, and Y. Ardo. 2003. Lactobacillus strains
isolated from Danbo cheese as adjunct cultures in a cheese model
system. Int. J. Food Microbiol. 85:159–169.

Arroyo, L., L. N. Cotton, and J. H. Martin. 1994. Evaluation of media
for enumeration of Bifidobacterium adolescentis, B. infantis and
B. longum from pure culture. Cult. Dairy Prod. J. 29:2–24.

Baruzzi, F., M. Morea, A. Matarante, and P. S. Cocconcelli. 2000.
Changes in the Lactobacillus community during Ricotta Forte
cheese natural fermentation. J. Appl. Microbiol. 89:807–814.

Beresford, T., and A. Williams. 2004. The microbiology of cheese
ripening. Pages 287–318 in Cheese: Chemistry, Physics and Mi-
crobiology. 3rd ed. P. F. Fox, P. L. H. McSweeney, T. M. Cogan,
and T. P. Guinee, ed. Elsevier, Amsterdam, the Netherlands.

Berthier, F., E. Beuvier, A. Dasen, and R. Grappin. 2001. Origin
and diversity of mesophilic lactobacilli in Comte cheese, as re-
vealed by PCR with repetitive and species-specific primers. Int.
Dairy J. 11:293–305.

Bolotin, A., B. Quinquis, P. Renault, A. Sorokin, S. D. Ehrlich, S.
Kulakauskas, A. Lapidus, E. Goltsman, M. Mazur, G. D. Pusch,
M. Fonstein, R. Overbeek, N. Kyprides, B. Purnelle, D. Prozzi,
K. Ngui, D. Masuy, F. Hancy, S. Burteau, M. Boutry, J. Delcour,
A. Goffeau, and P. Hols. 2004. Complete sequence and compara-
tive genome analysis of the dairy bacterium Streptococcus ther-
mophilus. Nat. Biotechnol. 22:1554–1558.

Bolotin, A., P. Wincker, S. Mauger, O. Jaillon, K. Malarme, J. Weis-
senbach, D. Ehrlich, and A. Sorokin. 2001. The complete genome
sequence of the lactic acid bacterium Lactococcus lactis ssp.
lactis IL1403. Genome Res. 11:731–753.

Broadbent, J. R. 2001. Genetics of lactic acid bacteria. Pages 243–
299 in Applied Dairy Microbiology. 2nd ed. J. L. Steele and E.
H. Marth, ed. Marcel Dekker Inc., New York, NY.

Broadbent, J. R., and J. L. Steele. 2007. Proteolytic enzymes of
lactic acid bacteria and their influence on bitterness in bacterial-
ripened cheeses. In Flavor of Dairy Products. K. R. Caldwaller,
M. A. Drake, and R. J. McGorrin, ed. Am. Chem. Soc., Washing-
ton, DC.

Broome, M. C., D. A. Krause, and M. W. Hickey. 1990. The use of
non-starter lactobacilli in Cheddar cheese manufacture. Aust.
J. Dairy Tech. 45:67–73.

Brüssow, H., A. Bruttin, F. Desiere, S. Lucchini, and S. Foley. 1998.
Molecular ecology and evolution of Streptococcus thermophilus
bacteriophages—A review. Virus Genes 16:95–109.

Burford, M. Y. 1989. Enumeration of Lactobacillus acidophilus and
Bifidobacterium in milk +using oxygen-reducing membrane frac-
tion. Cult. Dairy Prod. J. 24:21–23.

Capra, M. L., A. Del, L. Quiberoni, H. W. Ackermann, S. Moineau,
and J. A. Reinheimer. 2006. Characterization of a new virulent
phage (MLC-A) of Lactobacillus paracasei. J. Dairy Sci.
89:2414–2423.

Champagne, C. P., D. Roy, and A. Lafond. 1997. Selective enumera-
tion of Lactobacillus casei in yoghurt-type fermented milks

Journal of Dairy Science Vol. 90 No. 9, 2007

based on a 15°C incubation temperature. Biotechnol. Tech.
11:567–569.

Christensen, H., H. Frokiaer, and J. J. Pestka. 2002. Lactobacilli
differentially modulate expression of cytokines and maturation
surface markers in murine dentritic cells. J. Immunol.
168:171–178.

Christensen, J. E., E. G. Dudley, J. A. Pederson, and J. L. Steele.
1999. Peptidases and amino acid catabolism in lactic acid bacte-
ria. Antonie Van Leeuwenhoek 76:217–246.

Collins, E. B. 1978. Enumeration of Lactobacillus acidophilus with
the agar plate count. J. Food Prot. 41:439–442.

Collins, M. D., B. A. Phillips, and P. Zanoni. 1989. Deoxyribonucleic
acid homology studies of Lactobacillus casei, Lactobacillus para-
casei sp. nov., subsp. paracasei and subsp. tolerans and Lactoba-
cillus rhamnosus sp. nov., comb. nov. Int. J. Syst. Bacteriol.
39:105–108.

Crow, V., B. Curry, and M. Hayes. 2001. The ecology of non-starter
lactic acid bacteria (NSLAB) and their use as adjuncts in New
Zealand Cheddar. Int. Dairy J. 11:275–283.

Crow, V. L. 1986. Metabolism of aspartate by Propionibacterium
freundenreichii subsp. shermanii: Effect of lactate fermentation.
Appl. Environ. Microbiol. 52:359–365.

Curic, M., B. Stuer-Lauridsen, P. Renault, and D. Nilsson. 1999. A
general method for selection of α-acetolactate decarboxylase-
deficient Lactococcus lactis mutants to improve diacetyl forma-
tion. Appl. Environ. Microbiol. 65:1202–1206.

Dave, R. I., and N. P. Shah. 1996. Evaluation of media for selective
enumeration of Streptococcus thermophilus, Lactobacillus del-
brueckii ssp. bulgaricus, Lactobacillus acidophilus and Bifido-
bacterium spp. J. Dairy Sci. 79:1529–1536.

de Vos, W. M. 1996. Metabolic engineering of sugar catabolism in
lactic acid bacteria. Antonie Van Leeuwenhoek 70:223–242.

deAngelis, M., A. Corsetti, N. Tosti, M. R. Corbo, and M. Gobbetti.
2001. Characterization of non-starter lactic acid bacteria from
Italian ewe cheeses baseed on phenotypic, genotypic and cell
wall protein analyses. Appl. Environ. Microbiol. 67:2011–2020.

Dellaglio, F., G. E. Felis and S. Torriani. 2002. The status of the
species Lactobacillus casei (Orla Jensen 1916) Hansen and Les-
sel 1971 and Lactobacillus paracasei Collins et al. 1989. Request
for an opinion. Int. J. Syst. Evol. Microbiol. 52:285–287.

Dicks, L. M. T., E. M. Duplessis, F. Dellaglio, and E. Lauer. 1996.
Reclassification of Lactobacillus casei subsp. casei ATCC 393
and Lactobacillus rhamnosus ATCC 15820 as Lactobacillus zeae
nom. rev., designation of ATCC 334 as the neotype of L. casei
subsp. casei and rejection of the name Lactobacillus paracasei.
Int. J. Syst. Bacteriol. 46:337–340.

Dudley, E. G., and J. L. Steele. 2005. Succinate production and
citrate catabolism by Cheddar cheese nonstarter lactobacilli. J.
Appl. Microbiol. 98:14–23.

Duthoit, F., J. J. Godon, and M. C. Montel. 2003. Bacterial commu-
nity dynamics during production of registeres designation of
origin Salers cheeses as evaluated by 16S rRNA gene single
strand conformation polymorphism analysis. Appl. Environ. Mi-
crobiol. 69:3840–3848.

Ferain, T., J. N. Hobbs, J. Richardson, D. Garmyn, P. Hols, N. E.
Allen, and J. Delcour. 1996. Knockout of the two ldh genes
has a major impact on peptidoglycan precursor synthesis in
Lactobacillus plantarum. J. Bacteriol. 178:5431–5437.

Fitzsimons, N. A., T. M. Cogan, S. Condon, and T. Beresford. 1999.
Phenotypic and genotypic characterization of non-starter lactic
acid bacteria in mature cheddar cheese. Appl. Environ. Micro-
biol. 65:3418–3426.

Fox, P. F., T. P. Guinee, T. M. Cogan, and P. L. H. McSweeney.
2000. Fundamentals of Cheese Science. Aspen Publishers,
Gaithersburg, MD.

Fox, P. F., and P. L. H. McSweeney. 2004. Cheese: An overview.
Pages 1–18 in Cheese: Chemistry, Physics, and Microbiology.
3rd ed. Elsevier Academic Press, Oxford, UK.

Fox, P. F., P. L. H. McSweeney, and C. M. Lynch. 1998. Significance
of non-starter lactic acid bacteria in Cheddar cheese. Aust. J.
Dairy Technol. 53:83–89.



INVITED REVIEW: ADVANCES IN STARTER CULTURES 4019

Franz, C. M. A. P., W. H. Holzapfel, and M. E. Stiles. 1999. Entero-
cocci at the crossroads of food safety. Int. J. Food Microbiol.
47:1–14.

Garvey, P., D. van Sinderen, D. P. Twomey, C. Hill, and G. F.
Fitzgerald. 1995. Molecular genetics of bacteriophage and natu-
ral phage defense systems in the genus Lactococcus. Int. Dairy
J. 5:905–947.

Goffin, P., M. Deghorain, J. L. Mainardi, I. Tytgat, M. C. Champo-
mier-Verges, M. Kleerebezem, and P. Hols. 2005. Lactate race-
mization as a rescue pathway for supplying D-lactate to the
cell wall biosynthesis machinery in Lactobacillus plantarum. J.
Bacteriol. 187:6750–6761.

Goldsby, R. A., T. J. Kindt, and B. A. Osborne, ed. 2000. Immunology.
Freeman and Company, New York, NY.

Goupil-Feuillerat, N., M. Cocaign-Bousquet, J.-J. Godon, S. D. Ehr-
lich, and P. Renault. 1997. Dual role of α-acetolactate decarbox-
ylase in Lactococcus lactis subsp. lactis. J. Bacteriol.
179:6285–6293.

Gumalla, S., and J. R. Broadbent. 1999. Tryptophan catabolism by
Lactobacillus casei and Lactobacillus helveticus cheese flavor
adjuncts. J. Dairy Sci. 82:2070–2077.

Gumalla, S., and J. R. Broadbent. 2001. Tyrosine and phenylalanine
catabolism by Lactobacillus cheese flavor adjuncts. J. Dairy Sci.
84:1011–1019.

Ha, C. L., J. H. Lee, H. R. Zhou, Z. Ustunol, and J. J. Pestka. 1999.
Effects of yogurt ingestion on mucosal and systemic cytokine
gene expression in the mouse. J. Food Prot. 62:181–188.

Heufler, C., F. Koch, U. Stanzl, G. Topar, M. Wysocka, G. Trinchieri,
A. Enk, R. M. Steinman, N. Romani, and G. Schuler. 1996.
Interleukin-12 is produced by dendritic cells and mediates T
helper 1 development as well as interferon-γ production by T
helper 1 cells. Eur. J. Immunol. 26:659–664.

Hirschfeld, M., J. J. Weis, V. Toshchakov, C. A. Salkowski, M. J.
Cody, D. C. Ward, N. Qureshi, S. M. Michalek, and S. N. Vogel.
2001. Signaling by Toll-like receptor 2 and 4 agonists results
in differential gene expression in murine macrophages. Infect.
Immun. 69:1477–1482.

Horng, T., G. M. Barton, R. A. Flavell, and R. Medzhitov. 2002. The
adopter molecule TIRAP provides signaling specificity to Toll-
like receptors. Nature 420:329–333.

Hull, R. R., and A. V. Roberts. 1984. Differential enumeration of
Lactobacillus acidophilus in yoghurt. Aust. J. Dairy Technol.
39:160–163.

Hunger, W. 1986. Aesculin-cellobiose agar for the isolation and
counting of Lactobacillus acidophilus. Milchwissenschaft
41:283–285.

International Dairy Foods Association (IDFA). 2006. Cultured Dairy
Products Report. IDFA, Washington, DC.

Johns, F. E., J. F. Gordon, and N. Shapton. 1978. The separation
from yogurt cultures of Lactobacilli and Streptococci using rein-
forced clostridial agar at pH 5.5 and plate count agar incorporat-
ing milk. J. Soc. Dairy Technol. 31:209–212.

Jones, B. W., T. Means, K. A. Heldwein, M. Keen, P. J. Hill, J.
T. Belisle, and M. J. Fenton. 2001. Different toll-like receptor
agonists induce distinct macrophage responses. J. Leukoc. Biol.
60:1036–1044.

Jordan, K. N., and T. M. Cogan. 1993. Identification and growth of
non-starter lactic acid bacteria in Irish Cheddar cheese. Irish
J. Agric. Food Res. 32:47–55.

Jordan, K. N., and T. M. Cogan. 1999. Heat resistance of Lactobacil-
lus spp. isolated from Cheddar cheese. Lett. Appl. Microbiol.
29:136–140.

Kaneuchi, C., M. Seki, and K. Kamagata. 1988. Production of suc-
cinic acid from citric acid and related acids by Lactobacillus
strains. Appl. Environ. Microbiol. 54:3053–3056.

Kang, O. J., L. P. Vezinz, S. Laberge, and R. E. Simard. 1998. Some
factors influencing autolysis of Lactobacillus bulgaricus and
Lactobacillus casei. J. Dairy Sci. 81:639–646.

Kashige, N., Y. Nakashima, F. Miake, and K. Watanabe. 2000. Clon-
ing, sequence analysis and expression of Lactobacillus casei
phage Pl-1 lysis genes. Arch. Virol. 145:1521–1534.

Journal of Dairy Science Vol. 90 No. 9, 2007

Khalid, N. M., and E. H. Marth. 1990. Proteolytic activity by strains
of Lactobacillus plantarum and Lactobacillus casei. J. Dairy Sci.
73:3068–3076.

Kieronczyk, A., S. Skeie, T. Langsrud, and M. Yvon. 2003. Coopera-
tion between Lactococcus lactis and nonstarter lactobacilli in
the formation of cheese aroma from amino acids. Appl. Environ.
Microbiol. 69:734–739.

Klaenhammer, T. R., and G. F. Fitzgerald. 1994. Bacteriophages
and bacteriophage resistance. Pages 106–168 in Genetics and
Biotechnology of Lactic Acid Bacteria. M. J. Gasson and W. M.
De Vos, ed. Blackie Academic and Professional, London, UK.

Kneifel, W., and B. Pacher. 1993. An X-Glu based agar medium for
the selective enumeration of L. acidophilus in yogurt related
milk products. Int. Dairy J. 3:277–291.

Laht, T. M., S. Kask, P. Elias, K. Adamberg, and T. Paalme. 2002.
Role of arginine in the development of secondary microflora in
Swiss-type cheese. Int. Dairy J. 12:831–840.

Lankaputhra, W. E. V., and N. P. Shah. 1996. A simple method for
selective enumeration of Lactobacillus acidophilus in yoghurt
supplemented with L. acidophilus and Bifidobacterium spp.
Milchwissenschaft 51:446–451.

Lankaputhra, W. E. V., N. P. Shah, and M. L. Britz. 1996. Evaluation
of media for selective enumeration of Lactobacillus acidophilus
and Bifidobacterium spp. Food Australia 48:113–118.

Laroia, S., and J. H. Martin. 1991. Methods for enumerating and
propagating bifidobacteria. Cult. Dairy Prod. J. 26:32–33.

Lee, S. Y., E. R. Vedamuthu, and C. J. Washam. 1974. An agar
medium for the differential enumeration of yoghurt starter bac-
teria. J. Milk Food Technol. 37:272–276.

Leuschner, R. G. K., and W. P. Hammes. 1998. Degradation of hista-
mine and tyramine by Brevibacterium linens during surface rip-
ening of Munster cheese. J. Food Prot. 61:874–878.

Lindgren, S. E., L. T. Axelsson, and R. F. McFeeters. 1990. Anaerobic
L-lactate degradation by Lactobacillus plantarum. FEMS Micro-
biol. Lett. 66:209–214.

Lynch, C. M., P. L. H. McSweeney, P. F. Fox, T. M. Cogan, and F.
D. Drinan. 1996. Manufacture of Cheddar cheeses with and
without adjunct lactobacilli under controlled microbiological
conditions. Int. Dairy J. 6:851–867.

Makarova, K., A. Slesarev, Y. Wolf, A. Sorokin, B. Mirkin, E. Koonin,
A. Pavlov, N. Pavlova, V. Karamychev, N. Polouchine, V. Shak-
hova, I. Grigoriev, Y. Lou, D. Rohksar, S. Lucas, K. Huang, D. M.
Goodstein, T. Hawkins, V. Plengvidhya, D. Welker, J. Hughes, Y.
Goh, A. Benson, K. Baldwin, J.-H. Lee, I. Dı́az-Muñiz, B. Dosti,
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