380 research outputs found

    Na/beta-alumina/NaAlCl4, Cl2/C circulating cell

    Get PDF
    A study was made of a high specific energy battery based on a sodium negative electrode and a chlorine positive electrode with molten AlCl3-NaCl electrolyte and a solid beta alumina separator. The basic performance of a Na beta-alumina NaAlCl4, Cl2/C circulating cell at 200 C was demonstrated. This cell can be started at 150 C. The use of melting sodium chloroaluminate electrolyte overcomes some of the material problems associated with the high working temperatures of present molten salt systems, such as Na/S and LiAl/FeS, and retains the advantages of high energy density and relatively efficient electrode processes. Preliminary investigations were conducted on a sodium-chlorine static cell, material compability, electrode design, wetting, and theoretical calculations to assure a better chance of success before assembling a Na/Cl2 circulating cell. Mathematical models provide a theoretical explanation for the performance of the NaCl2 battery. The results of mathematical models match the experimental results very well. According to the result of the mathematical modeling, an output at 180 mA/sq cm and 3.2 V can be obtained with optimized cell design

    Neutral skyrmion configurations in the low-energy effective theory of spinor condensate ferromagnets

    Full text link
    We study the low-energy effective theory of spinor condensate ferromagnets for the superfluid velocity and magnetization degrees of freedom. This effective theory describes the competition between spin stiffness and a long-ranged interaction between skyrmions, topological objects familiar from the theory of ordinary ferromagnets. We find exact solutions to the non-linear equations of motion describing neutral configurations of skyrmions and anti-skyrmions. These analytical solutions provide a simple physical picture for the origin of crystalline magnetic order in spinor condensate ferromagnets with dipolar interactions. We also point out the connections to effective theories for quantum Hall ferromagnets.Comment: 13 pages, 7 figure

    Renormalization Group calculations with k|| dependent couplings in a ladder

    Full text link
    We calculate the phase diagram of a ladder system, with a Hubbard interaction and an interchain coupling tt_\perp. We use a Renormalization Group method, in a one loop expansion, introducing an original method to include kk_{||} dependence of couplings. We also classify the order parameters corresponding to ladder instabilities. We obtain different results, depending on whether we include kk_{||} dependence or not. When we do so, we observe a region with large antiferromagnetic fluctuations, in the vicinity of small tt_\perp, followed by a superconducting region with a simultaneous divergence of the Spin Density Waves channel. We also investigate the effect of a non local backward interchain scattering : we observe, on one hand, the suppression of singlet superconductivity and of Spin Density Waves, and, on the other hand, the increase of Charge Density Waves and, for some values of tt_\perp, of triplet superconductivity. Our results eventually show that kk_{||} is an influential variable in the Renormalization Group flow, for this kind of systems.Comment: 20 pages, 19 figures, accepted in Phys. Rev. B 71 v. 2

    Reexamination of a multisetting Bell inequality for qudits

    Full text link
    The class of d-setting, d-outcome Bell inequalities proposed by Ji and collaborators [Phys. Rev. A 78, 052103] are reexamined. For every positive integer d > 2, we show that the corresponding non-trivial Bell inequality for probabilities provides the maximum classical winning probability of the Clauser-Horne-Shimony-Holt-like game with d inputs and d outputs. We also demonstrate that the general classical upper bounds given by Ji et al. are underestimated, which invalidates many of the corresponding correlation inequalities presented thereof. We remedy this problem, partially, by providing the actual classical upper bound for d less than or equal to 13 (including non-prime values of d). We further determine that for prime value d in this range, most of these probability and correlation inequalities are tight, i.e., facet-inducing for the respective classical correlation polytope. Stronger lower and upper bounds on the quantum violation of these inequalities are obtained. In particular, we prove that once the probability inequalities are given, their correlation counterparts given by Ji and co-workers are no longer relevant in terms of detecting the entanglement of a quantum state.Comment: v3: Published version (minor rewordings, typos corrected, upper bounds in Table III improved/corrected); v2: 7 pages, 1 figure, 4 tables (substantially revised with new results on the tightness of the correlation inequalities included); v1: 7.5 pages, 1 figure, 4 tables (Comments are welcome

    Clinical and Financial Impact of Readmissions Following Colorectal Resection: An Analysis of Predictors, Outcomes, and Cost

    Get PDF
    Background: Following passage of the Affordable Care Act, 30day readmissions have come under greater scrutiny, with penalties levied for higher than expected readmission rates. We examined risk factors for 30day readmission following colorectal resection and evaluated the financial impact of readmissions on the healthcare system. Methods: The University HealthSystem Consortium Clinical Database was queried for adults undergoing colorectal surgery for cancer, diverticular disease, inflammatory bowel disease, or benign tumors from 2008-2012. Predictors of 30day readmission were assessed with multivariable logistic regression. Additional endpoints included time to readmission, readmission diagnosis, readmission length of stay (LOS), and readmission cost. Results: A total of 70,484 patients met study inclusion criteria, 13.7% (9,632) of which were readmitted within 30 days of discharge. The strongest independent predictors of readmission were: LOS ≥4 days (OR 1.44; 95% CI 1.32-1.57), stoma (OR 1.54; 95% CI 1.46-1.51), and non-home discharge (OR 1.68; 95% CI 1.57-1.81). Of those readmitted, half occurred within 7 days, 13% required ICU care, 6% had a reoperation, and 2% died during the readmission stay. The median combined total direct hospital cost was over two times higher (26,917v.26,917 v. 13,817; p\u3c0.001) than non-readmitted patients. Compared with late readmissions, those readmitted within 7 days were more likely to have a reoperation (8% v. 4%, p\u3c0.001), be admitted to the ICU (14% vs. 12%, p\u3c0.001), and had a longer median readmission LOS (5d vs. 4d, p\u3c0.001). CONCLUSIONS: 30-day readmissions following colorectal resection occur frequently and incur a significant financial burden on the healthcare system. Highest-risk patients include those with longer LOS, stoma, and non-home discharge. Future studies aimed at targeted interventions may reduce readmissions and curb escalating healthcare costs

    F-wave versus P-wave Superconductivity in Organic Conductors

    Full text link
    Current experimental results suggest that some organic quasi-one-dimensional superconductors exhibit triplet pairing symmetry. Thus, we discuss several potential triplet order parameters for the superconducting state of these systems within the functional integral formulation. We compare weak spin-orbit coupling fxyzf_{xyz}, pxp_x, pyp_y and pzp_z symmetries via several thermodynamic quantities. For each symmetry, we analyse the temperature dependences of the order parameter, condensation energy, specific heat, and superfluid density tensor.Comment: 5 pages, 4 figure

    An SU(N) Mott insulator of an atomic Fermi gas realized by large-spin Pomeranchuk cooling

    Get PDF
    The Hubbard model, containing only the minimum ingredients of nearest neighbor hopping and on-site interaction for correlated electrons, has succeeded in accounting for diverse phenomena observed in solid-state materials. One of the interesting extensions is to enlarge its spin symmetry to SU(N>2), which is closely related to systems with orbital degeneracy. Here we report a successful formation of the SU(6) symmetric Mott insulator state with an atomic Fermi gas of ytterbium (173Yb) in a three-dimensional optical lattice. Besides the suppression of compressibility and the existence of charge excitation gap which characterize a Mott insulating phase, we reveal an important difference between the cases of SU(6) and SU(2) in the achievable temperature as the consequence of different entropy carried by an isolated spin. This is analogous to Pomeranchuk cooling in solid 3He and will be helpful for investigating exotic quantum phases of SU(N) Hubbard system at extremely low temperatures.Comment: 20 pages, 6 figures, to appear in Nature Physic
    corecore