13 research outputs found
Progression to microalbuminuria in patients with type 1 diabetes: a seven-year prospective study
<p>Abstract</p> <p>Background</p> <p>The presence of microalbuminuria can be associated with overt nephropathy and cardiovascular disease in patients with type 1 diabetes (T1D). We aimed to determine the incidence and evaluate the baseline predictors for the development of microalbuminuria in patients with T1D.</p> <p>Methods</p> <p>This study is a longitudinal cohort study of 122 normoalbuminuric patients with T1D who were receiving routine clinical care at baseline. A detailed medical history was taken, and a physical examination was performed at baseline. All of the patients were regularly examined for diabetes-associated complications. An analysis of predictors was performed using the Cox regression.</p> <p>Results</p> <p>Over 6.81 (3.59-9.75) years of follow-up, 50 (41%) of the patients developed microalbuminuria. The incidence density was 6.79/100 people per year (95% CI 5.04-8.95), and the microalbuminuria developed after 5.9 (2.44-7.76) and 11 (5-15) years of follow-up and diabetes duration, respectively. After an individual Cox regression, the baseline variables associated with the development of microalbuminuria were age, age at diagnosis, duration of diabetes, systolic and diastolic blood pressure, fasting glycemia, body mass index (BMI), total cholesterol and triglycerides levels, cholesterol/HDL ratio and a family history of type 2 diabetes.After a multivariate Cox regression, the only independent factors associated with the development of microalbuminuria were BMI [HR 1.12 (1.03-1.21)] and cholesterol/HDL ratio [HR 1.32 (1.05-1.67)].</p> <p>Conclusions</p> <p>A higher BMI and cholesterol/HDL ratio increased the risk of developing microalbuminuria in young patients with T1D after a short follow-up. Both risk factors are modifiable and should be identified early and followed closely.</p
HIV-1 Inhibits Autophagy in Bystander Macrophage/Monocytic Cells through Src-Akt and STAT3
Autophagy is a homeostatic mechanism of lysosomal degradation. Defective autophagy has been linked to various disorders such as impaired control of pathogens and neurodegeneration. Autophagy is regulated by a complex array of signaling pathways that act upstream of autophagy proteins. Little is known about the role of altered regulatory signaling in disorders associated with defective autophagy. In particular, it is not known if pathogens inhibit autophagy by modulation of upstream regulatory pathways. Cells infected with HIV-1 blocked rapamycin-induced autophagy and CD40-induced autophagic killing of Toxoplasma gondii in bystander (non-HIV-1 infected) macrophage/monocytic cells. Blockade of autophagy was dependent on Src-Akt and STAT3 triggered by HIV-1 Tat and IL-10. Neutralization of the upstream receptors VEGFR, β-integrin or CXCR4, as well as of HIV-1 Tat or IL-10 restored autophagy in macrophage/monocytic cells exposed to HIV-1-infected cells. Defective autophagic killing of T. gondii was detected in monocyte-derived macrophages from a subset of HIV-1+ patients. This defect was also reverted by neutralization of Tat or IL-10. These studies revealed that a pathogen can impair autophagy in non-infected cells by activating counter-regulatory pathways. The fact that pharmacologic manipulation of cell signaling restored autophagy in cells exposed to HIV-1-infected cells raises the possibility of therapeutic manipulation of cell signaling to restore autophagy in HIV-1 infection