4,654 research outputs found

    Effect of atomic beam alignment on photon correlation measurements in cavity QED

    Full text link
    Quantum trajectory simulations of a cavity QED system comprising an atomic beam traversing a standing-wave cavity are carried out. The delayed photon coincident rate for forwards scattering is computed and compared with the measurements of Rempe et al. [Phys. Rev. Lett. 67, 1727 (1991)] and Foster et al. [Phys. Rev. A 61, 053821 (2000)]. It is shown that a moderate atomic beam misalignment can account for the degradation of the predicted correlation. Fits to the experimental data are made in the weak-field limit with a single adjustable parameter--the atomic beam tilt from perpendicular to the cavity axis. Departures of the measurement conditions from the weak-field limit are discussed.Comment: 15 pages and 13 figure

    Proposed realization of the Dicke-model quantum phase transition in an optical cavity QED system

    Get PDF
    The Dicke model describing an ensemble of two-state atoms interacting with a single quantized mode of the electromagnetic field (with omission of the Â^2 term) exhibits a zero-temperature phase transition at a critical value of the dipole coupling strength. We propose a scheme based on multilevel atoms and cavity-mediated Raman transitions to realize an effective Dicke model operating in the phase transition regime. Optical light from the cavity carries signatures of the critical behavior, which is analyzed for the thermodynamic limit where the number of atoms is very large

    Dramatic impact of pumping mechanism on photon entanglement in microcavity

    Full text link
    A theory of entangled photons emission from quantum dot in microcavity under continuous and pulsed incoherent pumping is presented. It is shown that the time-resolved two-photon correlations drastically depend on the pumping mechanism: the continuous pumping quenches the polarization entanglement and strongly suppresses photon correlation times. Analytical theory of the effect is presented.Comment: 6 pages, 3 figure

    International Portfolio Choice in an Overlapping Generations Model with Transactions Costs

    Get PDF
    This paper studies the implications for international portfolio diversification of a simple OLG model of the world economy with transaction costs. Our main result shows that the introduction of very small transaction costs is sufficient to reproduce the large home bias observed in the composition of portfolios.Home bias; Overlapping generations model; Transaction costs

    The three-site Bose-Hubbard model subject to atom losses: the boson-pair dissipation channel and failure of the mean-field approach

    Full text link
    We employ the perturbation series expansion for derivation of the reduced master equations for the three-site Bose-Hubbard model subject to strong atom losses from the central site. The model describes a condensate trapped in a triple-well potential subject to externally controlled removal of atoms. We find that the π\pi-phase state of the coherent superposition between the side wells decays via two dissipation channels, the single-boson channel (similar to the externally applied dissipation) and the boson-pair channel. The quantum derivation is compared to the classical adiabatic elimination within the mean-field approximation. We find that the boson-pair dissipation channel is not captured by the mean-field model, whereas the single-boson channel is described by it. Moreover, there is a matching condition between the zero-point energy bias of the side wells and the nonlinear interaction parameter which separates the regions where either the single-boson or the boson-pair dissipation channel dominate. Our results indicate that the MM-site Bose-Hubbard models, for M>2M>2, subject to atom losses may require an analysis which goes beyond the usual mean-field approximation for correct description of their dissipative features. This is an important result in view of the recent experimental works on the single site addressability of condensates trapped in optical lattices.Comment: 9 pages; 3 figures in color; submitted to PR

    The Accuracy of Perturbative Master Equations

    Full text link
    We consider open quantum systems with dynamics described by master equations that have perturbative expansions in the system-environment interaction. We show that, contrary to intuition, full-time solutions of order-2n accuracy require an order-(2n+2) master equation. We give two examples of such inaccuracies in the solutions to an order-2n master equation: order-2n inaccuracies in the steady state of the system and order-2n positivity violations, and we show how these arise in a specific example for which exact solutions are available. This result has a wide-ranging impact on the validity of coupling (or friction) sensitive results derived from second-order convolutionless, Nakajima-Zwanzig, Redfield, and Born-Markov master equations.Comment: 6 pages, 0 figures; v2 updated references; v3 updated references, extension to full-time and nonlocal regime

    Macquarie Island, its conservation and management

    Get PDF
    Sub-Antarctic Macquarie Island, 12 785 ha in area, is part of the Australian state of Tasmania. It is managed by the Tasmanian Parks and Wildlife Service, in cooperation with the Australian Department of the Environment and Water Resources, as a World Heritage Area, Nature Reserve, Biosphere Reserve and National Estate property. The reserve encompasses outstanding and unique geological values, exceptional natural beauty, abundant wildlife and internationally significant historic heritage. The island is surrounded by the Macquarie Island Marine Park of 16 200 000 ha. This paper outlines frameworks for the conservation and management of its biota and environment including its unique geology

    Crossover of phase qubit dynamics in presence of negative-result weak measurement

    Full text link
    Coherent dynamics of a superconducting phase qubit is considered in the presence of both unitary evolution due to microwave driving and continuous non-unitary collapse due to negative-result measurement. In the case of a relatively weak driving, the qubit dynamics is dominated by the non-unitary evolution, and the qubit state tends to an asymptotically stable point on the Bloch sphere. This dynamics can be clearly distinguished from conventional decoherence by tracking the state purity and the measurement invariant (``murity''). When the microwave driving strength exceeds certain critical value, the dynamics changes to non-decaying oscillations: any initial state returns exactly to itself periodically in spite of non-unitary dynamics. The predictions can be verified using a modification of a recent experiment.Comment: 5 pages, 4 eps figure

    Multiple-time correlation functions for non-Markovian interaction: Beyond the Quantum Regression Theorem

    Full text link
    Multiple time correlation functions are found in the dynamical description of different phenomena. They encode and describe the fluctuations of the dynamical variables of a system. In this paper we formulate a theory of non-Markovian multiple-time correlation functions (MTCF) for a wide class of systems. We derive the dynamical equation of the {\it reduced propagator}, an object that evolve state vectors of the system conditioned to the dynamics of its environment, which is not necessarily at the vacuum state at the initial time. Such reduced propagator is the essential piece to obtain multiple-time correlation functions. An average over the different environmental histories of the reduced propagator permits us to obtain the evolution equations of the multiple-time correlation functions. We also study the evolution of MTCF within the weak coupling limit and it is shown that the multiple-time correlation function of some observables satisfy the Quantum Regression Theorem (QRT), whereas other correlations do not. We set the conditions under which the correlations satisfy the QRT. We illustrate the theory in two different cases; first, solving an exact model for which the MTCF are explicitly given, and second, presenting the results of a numerical integration for a system coupled with a dissipative environment through a non-diagonal interaction.Comment: Submitted (04 Jul 04
    corecore