8 research outputs found

    Data-based control synthesis and performance assessment for moored wave energy conversion systems: the PeWEC case

    Get PDF
    With a model-based control strategy, the effectiveness of the associated control action depends on the availability of a representative control-oriented model. In the case of floating offshore wave energy converters (WECs), the device response depends upon the interaction between mooring system, any mechanical parts, and the hydrodynamics of the floating body. This study proposes an approach to synthesise WEC controllers under the effect of mooring forces building a representative data-based linear model able to include any relevant dynamics. Moreover, the procedure is tested on the moored pendulum wave energy converter (PeWEC) by means of a high-fidelity mooring solver, OrcaFlex (OF). In particular, the control action is computed with and without knowledge of the mooring influence, in order to analyse and elucidate the effect of the station-keeping system on the harvested energy. The performance assessment of the device is achieved by evaluating device power on the resource scatter characterising Pantelleria, Italy. The results show the relevance of the mooring dynamics on the device response and final set of control parameters and, hence, a significant influence of the station-keeping system on control synthesis and extracted mechanical power

    Pilot-aided trellis-based demodulation

    No full text
    In optical transmission systems based on high order modulations the impact on system performance of Wiener phase noise affecting the received carrier phase can be relevant. To make less severe phase noise effects, solutions based on the use of known pilot symbols, that aid carrier phase recovery, have been recently introduced. This letter proposes a pilot-aided demodulation scheme where the memory of phase noise is dealt with by a trellis-based demodulation algorithm. The benefits in terms of achievable information rate and bit error rate compared to adversary schemes are demonstrated by computer simulations for strong phase noise with 4-ary quadrature amplitude modulation (4-QAM) and 16-QAM

    LMI-based passivation of LTI systems with application to marine structures

    Get PDF
    Due to the inherent relevance of passive (physically representative) models for control, state-estimation, and motion simulation in the field of marine systems, in this paper, an optimisation-based approach to passivation of linear time-invariant (LTI) systems is proposed with application to physically consistent dynamical modelling of marine structures. In particular, the presented strategy is based upon the introduction of a suitably designed perturbation, computed via minimisation of a linear objective subject to a specific set of linear matrix inequalities (LMIs). The performance of the passivation technique is showcased in terms of two case studies: An offshore platform, with a frequency-domain response computed by means of hydrodynamic codes, and a 1:20 scale wave energy converter (WEC), is characterised in terms of real experimental data

    Energy-maximising experimental control synthesis via impedance-matching for a multi degree-of-freedom wave energy converter

    No full text
    We present, in this paper, an experimental framework for design and synthesis of impedance-matching-based (IM) controllers capable of maximising energy extraction in inherently multi degree-of-freedom wave energy converter (WEC) systems, and its subsequent application to the Intertial Sea Wave Energy Converter (ISWEC) device, by incorporating recent advances in IM-based theory. In particular, we consider a 1/20th scale prototype of the ISWEC system, tested as part of a larger experimental campaign conducted within the tank facilities available at University degli Studi di Napoli Federico II, subject to a variety of wave conditions. We adopt two different control structures to realise an approximation of the TM principle, fully tuned based upon interpolation of a particular (experimentally obtained) non-parametric empirical transfer function estimate, which defines the optimal frequency-domain input-output response for energy-maximising behaviour. Furthermore, a performance comparison between controller tuning based upon traditional linear boundary element method models, and the presented experimental approach, is also offered, showing that the latter can consistently outperform the foriiter in realistic scenarios, for the set of analysed sea-states. Copyright (C) 2022 The Authors
    corecore