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Abstract

Due to the inherent relevance of passive (physically representative) models for control,
state-estimation, and motion simulation in the field of marine systems, in this paper, an
optimisation-based approach to passivation of linear time-invariant (LTI) systems is pro-
posed with application to physically consistent dynamical modelling of marine structures.
In particular, the presented strategy is based upon the introduction of a suitably designed
perturbation, computed via minimisation of a linear objective subject to a specific set of lin-
ear matrix inequalities (LMIs). The performance of the passivation technique is showcased
in terms of two case studies: An offshore platform, with a frequency-domain response
computed by means of hydrodynamic codes, and a 1:20 scale wave energy converter
(WEC), is characterised in terms of real experimental data.

1 INTRODUCTION

Availability of mathematical representations of physical pro-
cesses, that is, dynamical systems, is a fundamental pillar for
a large class of tasks/operations, including process perfor-
mance assessment, system optimisation, process control, and
state/fault estimation, among others. Such abstract represen-
tations of real processes must (to some extent, driven by the
specific application involved) respect the underlying physical
properties of the process under scrutiny, that is, they must
be physically consistent. This includes, for instance, prescribed
stability properties, zero dynamics, relative degree, controlla-
bility/observability, and passivity. The latter, particularly chal-
lenging to enforce, can be of paramount importance for a
number of applications, specially those involving/necessitating
an energy-based analysis of the corresponding process, for
example, [1–4].

One specific discipline where passivity becomes fundamen-
tal is marine engineering. Physically representative models of
marine structures are key tools for the development of train-
ing simulators, hardware-in-the-loop testing simulators, motion
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control systems, and model-based fault detection and diagnosis
techniques (see, for instance, [2, 5, 6]). A common practice is to
obtain these mathematical models based on frequency-domain
data, carefully collected from the specific marine structure in
question (either experimentally or numerically), by means of
system identification techniques (see, e.g. [7]). In particular, an
increase in interest in the use of linear time-invariant (LTI) mod-
els in recent years is evident, where such models are obtained via
black-box system identification, using frequency-domain data
provided by so-called hydrodynamic codes, such as [8]. This spe-
cific approach allows the computation of models using only lim-
ited information about the marine structure, that is, hull form
and approximate mass distribution. Nonetheless, even if the
physical problem is known to be passive, it is often the case
that identified models do not effectively reflect this property,
since enforcing passivity within the identification process is par-
ticularly challenging1. Not respecting this property can lead to
a number of undesirable consequences, such as numerical insta-
bility in simulation [2], non-convexity of energy-based control

1 A handful of strategies designed to guarantee passivity at the identification stage can be
found in, for example, [9, 10].
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procedures [4, 11], and unpredictable coupling between differ-
ent modes of motion [12], among others.

Motivated by this, a number of techniques have been pro-
posed to enforce the passivity of identified models, that is,
to achieve passivation, both within, and beyond, the scope of
marine engineering (see, for instance, [13–16]). Aiming to keep
this paper reasonably self-contained, we provide a brief dis-
cussion on the aforementioned techniques in the following.
The passivity enforcement method presented in [13] consid-
ers the detection of specific ranges (in frequency) where pas-
sivity violations occur, and introduces a perturbation in terms
of an augmented system, specifically designed to correct the
real-part of the frequency-response mapping of the target non-
passive marine system, while preserving internal stability. Note
that, since the order (dimension) of the augmented system is
strictly linked to the ‘number’ of frequency intervals where pas-
sivity violations occur, the technique discussed in [13] intro-
duces an additional computational cost to the final (passivised)
model, which can be challenging for real-time applications (e.g.
for control/state-estimation purposes). [14] and [16] assume a
pole-residue description for the target model, and introduce a
constrained optimisation procedure to enforce passivity by per-
turbing the associated residues, with a-priori knowledge of the
specific location of passivity violations in the frequency-domain.
Finally, [15] introduces a passivation method based upon pertur-
bation of the Hamiltonian matrices associated with the specific
target system. In particular, the strategy described in [15] begins
by detecting passivity violations via the set of purely imaginary
eigenvalues of the Hamiltonian, and introduces a corresponding
perturbation. We note that the strategy is based on the assump-
tion that any imaginary eigenvalue of the associated Hamilto-
nian matrices is either simple, or characterised by a complete
sets of eigenvectors (i.e. the corresponding algebraic and geo-
metric multiplicities associated with these eigenvalues are equal).
To summarise, the vast majority of the available strategies are
designed based on the detection and quantification of passivity
violations (by, for instance, frequency-sweeping [17] or spectral
analysis of associated Hamiltonian matrices [15]), and the intro-
duction of a specified (commonly structured) perturbation to
enforce such a property.

In this paper, in contrast, we propose an optimisation-based
approach to the passivisation of LTI systems. In particular,
we introduce a suitably designed perturbation, computed via
minimisation of a linear objective, subject to a specific set of
linear matrix inequalities (LMIs), which can be solved efficiently
using state-of-the-art and readily available LMI solvers. The
set of LMIs enforces the so-called Kalman–Yakubovich–
Popov (KYP) lemma (sometimes referred to as the positive
real lemma), by means of a perturbation on the associated
state-space matrices. We note that, unlike the available methods
described in the previous paragraph, the proposed strategy does
not require the a-priori localised detection and quantification of
passivity violations, hence being both straightforward to apply,
and efficient to solve, given the linear nature of the optimisation
objective. Furthermore, unlike the passivation technique for
marine systems presented in [13], the strategy proposed in this
paper does not require an augmented state-space description,

hence being especially appealing for design and synthesis of
real-time model-based control/state-estimation algorithms.
Finally, and motivated by the importance of passivity in phys-
ically consistent modelling of marine structures, we showcase
the performance of the proposed passivation technique in
terms of two case studies: An offshore platform, characterised
in the frequency-domain by hydrodynamic codes, and a 1:20th
scale wave energy converter (WEC), characterised by real
data collected during an experimental campaign at Aalborg
University, Denmark [18].

The remainder of this paper is organised as follows. Sec-
tion 1.1 introduces the notation utilised throughout our study.
Section 2 recalls fundamental preliminaries of passivity for LTI
systems, while Section 3 describes the proposed optimisation-
based passivisation algorithm. Section 4 showcases the perfor-
mance of our strategy for two different marine structures, while
Section 5 encompasses the main conclusions of our study.

1.1 Notation

Standard notation is considered throughout this paper, with
any exception detailed in this section. ℝ+ (ℝ−) denotes the
set of non-negative (non-positive) real numbers. ℂ<0 denotes
the set of complex numbers with negative real part. The sym-
bol 0 stands for any zero element, dimensioned according
to the context. The space of symmetric matrices of order
n is denoted as 𝕊n ⊂ ℝn×n. If P ∈ 𝕊n, the notation P > 0
(P ≥ 0) is used to say that P is positive (semi-positive) defi-
nite. Likewise, the notation P < 0 (P ≤ 0) is used to denote
that P is negative (semi-negative) definite. The operator ‖ ⋅‖2 ∶ ℝ

k×u → ℝ+, M ↦ ‖M‖2, denotes the spectral norm in
ℝk×u . The symbol 𝕀n denotes the identity matrix in ℂn×n.
The spectrum of a matrix A ∈ ℝn×n, that is, the set of its
eigenvalues, is denoted by 𝜆(A). If 𝜆(A) ⊂ ℝ, then 𝜆min{A} =

min 𝜆(A). The convolution between two functions f and g

is denoted as f ∗ g. Finally, the superscripts ⊺ and ⋆ denote
the transposition, and Hermitian transposition operators,
respectively.

2 PRELIMINARIES

This section briefly recalls fundamentals behind the concept
of passivity for linear time-invariant systems. In particular, we
consider a square, finite-dimensional, continuous-time, system,
written, for t ∈ ℝ+, in terms of the following set of differential
equations2,

Σ ∶

{
ẋ = Ax + Bu,

y = Cx + Du,
(1)

where x(t ) ∈ ℝn, {u(t ), y(t )} ⊂ ℝp, A ∈ ℝn×n, {B,C ⊺} ⊂ ℝn×p,
and D ∈ ℝp×p. Suppose (1) is minimal, that is, controllable and

2 From now on, the dependence on t is dropped when clear from the context.
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observable, x(0) = 0, and let 𝜆(A) ⊂ ℂ<0, that is, Σ is asymp-
totically stable. Let the complex-valued mapping W ∶ ℂ →

ℂp×p, s ↦ W (s), be the transfer function associated with (1),
that is,

W (s) = C (s𝕀n − A)−1B + D. (2)

Remark 1. From now on, for simplicity, we denote system (1) as
Σ = (A,B,C ,D).

We now recall key results with respect to the concept of
passivity for LTI systems. The interested reader is referred to,
for instance, [19, 20], for a detailed and formal discussion on
passivity (and positive realness) for a general class of systems.
In particular, we recall that the asymptotically stable system
Σ = (A,B,C ,D) is passive, that is,

∫
T

0
u(𝜏)y(𝜏)d𝜏 ≥ 0, (3)

∀T ∈ ℝ+, if and only if its transfer function W is positive real
(PR). Analogously, system (A,B,C ,D) is strictly passive, that
is,

∫
T

0
u(𝜏)y(𝜏)d𝜏 > 0, (4)

∀T ∈ ℝ+, if and only if its transfer function is strictly positive
real (SPR).

The connection between passivity and positive realness, for
the case of system (1), facilitates the passivity analysis of sys-
tem Σ in terms of the well-known Kalman–Yakubovich–Popov
lemma, also referred to as the positive real lemma (see, e.g.
[21, Chapter 8]): The transfer function W of system (1) is PR
if and only if there exists a matrix P ∈ 𝕊n, with P > 0, such
that [

PA + A⊺P PB −C ⊺

−(D + D⊺ )

]
≤ 0, (5)

holds. W is SPR if the inequality (5) holds strictly.

2.1 The case of (A,B,C, 0)

If the feedthrough matrix in (1) is such that D=0 (which is virtu-
ally always the case for real marine structure modelling [2, 3]) the
result arising from the KYP lemma requires a slight reformula-
tion. In particular, suppose ΣD=0 = (A,B,C , 0), with (A,B,C )
as in (1), and let WD=0 ∶ ℂ → ℂq×q , s ↦ WD=0(s), be its asso-
ciated transfer function. Then, WD=0 is PR if and only if [21,
Chapter 8] there exists a matrix P ∈ 𝕊n, with P > 0, such that

PA + A⊺P ≤ 0,

PB = C ⊺,
(6)

holds. The transfer function WD=0 is SPR if the Lyapunov
inequality in (6) holds strictly.

3 LMI-BASED PASSIVATION

As discussed throughout Section 1, the set of matrices
(A,B,C ,D), characterising the system Σ in (1), can be deter-
mined by a plethora of potential system identification proce-
dures applied to experimentally/numerically generated datasets
characterising the real (physical) process. Even if the physi-
cal problem is known to be passive, it is often the case that
the identified model does not reflect this property, leading to
physically inconsistent representations. This directly motivates
the following LMI-based passivation technique, built upon the
results recalled in Section 2.

Suppose a passivity-check (such as those described in, for
instance, [13, 15]) has been applied to system (1), declaring
Σ to be non-passive. Let a perturbed system ΣΔ be (com-
pactly) defined as ΣΔ = (A,B,C + ΔC ,D), with ΔC ∈ ℝp×n.
The objective posed in this paper is to design ΔC such that
the perturbed system ΣΔ is passive, with ‖ΔC‖ being as small
as possible with regard to some suitable matrix norm. Before
introducing the proposed passivation method, the following key
remark is introduced.

Remark 2. Let M ∈ ℝk×u . The inequality ‖M‖2 ≤ 𝛾, with 𝛾 >
0, can be equivalently written in terms of the LMI[

𝕀k𝛾 M

𝕀u𝛾

]
≥ 0. (7)

We now propose an optimisation-based approach for
the computation of ΔC , in terms of the following finite-
dimensional linear LMI-constrained problem.

Problem 1 (LMI-based passivation method). Find the perturbed
model ΣΔ = (A,B,C + ΔC ,D) such that ΔC is the solution of
the minimisation problem

min
𝛾∈ℝ+,ΔC∈ℝp×n

𝛾,

subject to:[
𝕀p𝛾 ΔC

𝕀n𝛾

]
≥ 0,[

PA + A⊺P PB − (C + ΔC )⊺

−(D + D⊺ )

]
≤ 0,

P = P⊺ > 0.

(8)

Remark 3. Problem 1 is based on the idea of finding the smallest
(in terms of the spectral norm) perturbation ΔC such that sys-
tem ΣΔ = (A,B,C + ΔC ,D) is passive. The latter property is
achieved by enforcing the LMI conditions of the KYP lemma,
that is, by forcing the transfer function of ΣΔ to be PR (see
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Section 2). Note that strict passivity can be directly considered
via Problem 1, by enforcing the transfer function of ΣΔ to be
SPR instead of PR.

Remark 4. The selection of the output matrix C for perturbation
is not arbitrary: Since Σ is asymptotically stable by assumption,
preserving A directly preserves its set of poles, that is, preserves
internal stability. Furthermore, the feedthrough matrix D is pre-
served to respect the response of Σ at high frequencies. That
said, note that one could perturb the input matrix B instead.
Nonetheless, this would require a specific change of variables,
within Problem 1, to avoid existence of bilinear terms in (8).

Remark 5. Problem 1 can be solved efficiently by means of
state-of-the-art (and readily available) LMI solvers, such as those
detailed in [22, 23].

Remark 6. We stress that, in contrast to state-of-the-art pas-
sivation techniques, for example, [13–16] (see also the discus-
sion provided in Section 1), Problem 1 does not require a-priori
identification of the specific (frequency) location of any passiv-
ity violation, but rather directly computes the minimum norm
perturbation required to ensure passivity without such knowl-
edge, hence easing the application of the proposed technique.
Furthermore, unlike the technique developed in [13] for marine
systems, the presented strategy does not require the definition
of an augmented system, being especially suitable for real-time
control/state-estimation design and synthesis applications.

3.1 The case of (A,B,C, 0)

Suppose now that we consider system ΣD=0, and let the corre-
sponding perturbed system be defined as ΣΔ

D=0 = (A,B,C +

ΔC , 0). While one can straightforwardly define an analogous
formulation to that posed in Problem 1, based upon the KYP
lemma presented in Section 2.1, some readily available LMI
toolboxes can have difficulties solving the equality constraint
defined in (6) for the perturbed system, that is, PB = (C +

ΔC )⊺. To overcome this potential implementation issue, this
equality constraint is approximated following [24, Chapter 3],
that is, in terms of the minimisation of its associated spectral
norm:

PB = (C+ΔC )⊺ → min
𝛽∈ℝ+

𝛽,

subject to:[
𝕀n𝛽 PB − (C + ΔC )⊺

𝕀p𝛽

]
≥ 0,

(9)

for any matrix P ∈ 𝕊n. We are now ready to introduce the ana-
log to Problem 1 for systems with zero feedthrough.

Problem 2 (LMI-based passivation with D = 0). Find the per-
turbed model ΣΔ

D=0 = (A,B,C + ΔC , 0) such that ΔC is the

solution of the minimisation problem

min
{𝛾,𝛽}⊂ℝ+,ΔC∈ℝp×n

w𝛾𝛾 + w𝛽𝛽,

subject to:[
𝕀p𝛾 ΔC

𝕀n𝛾

]
≥ 0,[

𝕀n𝛽 PB − (C + ΔC )⊺

𝕀p𝛽

]
≥ 0,

PA + A⊺P ≤ 0

P = P⊺ > 0,

(10)

where {w𝛾, w𝛽} ⊂ [0, 1] are such that w𝛾 + w𝛽 = 1.

Remark 7. Analogously to Problem 1, the methodology pre-
sented in Problem 2 is based on the idea of finding the smallest
(in terms of the spectral norm) perturbation ΔC such that sys-
tem ΣΔ

D=0 = (A,B,C + ΔC , 0) is passive. The latter property is
achieved by enforcing the conditions of the KYP lemma for sys-
tems with zero feedthrough (see Section 2.1), that is, by forcing
the transfer function of ΣΔ

D=0 to be PR. Note that strict passivity
can be achieved by tightening the latter condition to be SPR.

Remark 8. In contrast to Problem 1, the minimisation objec-
tive is now defined as the sum of two different contributions,
that is, 𝛾 + 𝛽, where 𝛾 refers to the minimisation of ‖ΔC‖2,
and 𝛽 accounts for the equality constraint as defined in (9).
The ‘weights’, w𝛾 and w𝛽 , are added to Problem (10) to assist in
trading-off these two objectives: w𝛾 > w𝛽 ‘prioritises’ minimisa-
tion of ‖ΔC‖ over satisfaction of (9), and vice versa. These two
weights can be determined by the user via numerical experience,
depending on the specific application involved.

3.2 Algorithmic overview

We summarise the strategy, presented throughout Section 3, in
the following paragraphs. In particular, an algorithmic overview
of the proposed passivation method is presented in Figure 1,
including a detailed description of each step involved.

As can be appreciated from Figure 1, we start with either a set
of numerical, or experimental, data characterising the dynam-
ics of the system under scrutiny. Note that the former is com-
monly computed via hydrodynamic codes for the case of marine
structures (see also the discussion provided in Section 1). With
the definition of such a set, standard frequency-domain sys-
tem identification techniques [7] are applied to compute a state-
space description (A,B,C ,D) describing the dynamics of the
system.

Remark 9. If experimental data is considered for the charac-
terisation of the system, post-processing techniques are com-
monly employed before performing system identification, with
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FIGURE 1 Algorithmic overview of the proposed passivation approach

the objective of, for instance, filtering any undesired effects,
such as measurement noise (see [7, 25]).

Though highly unlikely, if the identified model (A,B,C ,D)
is determined to be effectively passive, no passivation technique
is required, and the algorithm naturally stops. If, in contrast,

(A,B,C ,D) is non-passive (which is normally the case), we
introduce a perturbation ΔC in the output matrix of the tar-
get non-passive system, that is, we build a perturbed model
(A,B,C + ΔC ,D). If the target non-passive system is biproper,
that is, D ≠ 0, we solve Problem 1 to compute the minimum
norm ΔC to produce a passive system (A,B,C + ΔC ,D), and
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FIGURE 2 Schematic of a generic marine system, including a description
of the corresponding set of input-output variables

the algorithm stops. However, if the target non-passive system
is strictly proper, that is, D = 0, Problem 2 is considered analo-
gously.

4 PASSIVATION OF MARINE
STRUCTURES

Marine structures with zero forward speed can be generally rep-
resented in terms of the feedback interconnection between two
different LTI subsystems, as depicted in Figure 2. We provide a
brief description of the nature of these systems in the following
paragraphs. The interested reader is referred to, for instance, [5],
for a thorough treatment of this topic.

In particular, considering so-called linear potential flow the-
ory (see [5]), the equation of motion of a marine structure with
zero forward speed can be generally expressed in terms of the
following linear continuous-time system:

 ∶

{z̈ = frad − fre + fv + u,

y = ż,
(11)

where z ∶ ℝ+ → ℝN , t ↦ z (t ), denotes the displacement vec-
tor of the marine system, with N ∈ ℕ the corresponding num-
ber of degrees-of-freedom (i.e. modes of motion) associated
with the structure, frad ∶ ℝ

+ → ℝN , t ↦ frad(t ), the so-called
radiation force, which accounts for the fluid memory effects
acting on the structure, fv ∶ ℝ

+ → ℝN , t ↦ fv(t ), the viscous
force, and fre ∶ ℝ

+ → ℝN , t ↦ fre(t ), the restoring force. The
input mapping u ∶ ℝ+ → ℝN , t ↦ u(t ), represents the sum of
the external forces acting on the marine structure, including
uncontrollable effects (i.e. the so-called wave excitation force),
and controllable signals (i.e. user-designed control forces), while
 ∈ ℝN×N is the so-called generalised WEC mass matrix [5].
Finally, note that the output mapping y ∶ ℝ+ → ℝN , t ↦ y(t ),
is given by the velocity vector characterising the marine struc-
ture under analysis.

Remark 10. We set the output of system (11) to be the velocity
of the structure due to the underlying importance of this

variable in the design and synthesis of several families of con-
trollers (see [3, 26]). Nonetheless, note that we do this without
any loss of generality, since either displacement, or any other
linear combination of the marine structure motion variables,
can also be chosen as the output of system  .

Following linear potential flow theory, the hydrostatic restor-
ing force fre is expressed in terms of a linear relation involving
the system displacement, that is

fre = −shz, (12)

where sh ∈ ℝN×N is the so-called hydrostatic stiffness. Simi-
larly, viscous effects are represented in terms of a relation pro-
portional to the velocity of the marine system, that is

fv = −sv ż, (13)

with sv ∈ ℝN×N a viscous coefficient arising from a variety of
different linearisation procedures (see, e.g. [27, 28]). Finally, the
radiation force is characterised in terms of the so-called Cum-
mins’ equation (see [29]), by means of the following convolution
mapping:

frad = krad ∗ ż, (14)

where the mapping krad represents the radiation impulse
response function.

Since the impulse response krad fully characterises an LTI sys-
tem, one can decompose system  in (11) in terms of the feed-
back interconnection of two main subsystems, S1 and S2, that is

S1 ∶

{z̈ = −shz − sv ż + uS1
,

yS1
= ż,

(15)

with uS1
= u − yS2

, and

S2 ∶

{
frad = krad ∗ yS1

,

yS2
= frad.

(16)

Note that system S1 represents inertial effects, while sys-
tem S2 represents fluid memory effects that incorporate the
energy dissipation due to waves radiated as a consequence of
the motion of the structure, that is, radiation forces.

Remark 11. Both systems S1 and S2 should be passive (see [2, 9]).
Note that this inherently guarantees that the closed-loop (input-
output) behaviour  in (11) is passive and, hence, is automati-
cally internally stable [20].

While system S1 depends upon a finite number of fixed and
static system parameters (e.g. mass and hydrostatic stifness of
the structure), S2 is built upon the specific impulse response
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FIGURE 3 (a) 3D-render and (b) low-order mesh
(utilised in NEMOH to compute the frequency-domain
characterisation of the associated radiation system S2) for
the analysed offshore platform

function krad, which is virtually always computed by means of
hydrodynamic codes. Since these codes provide a frequency-
domain characterisation of such a radiation system, a parametric
(state-space) form for system S2, that is, a structure more suit-
able for time-domain motion simulation/control/estimation, is
commonly obtained in terms of black-box system identification
procedures (see Section 1). This, together with the discussion
provided in Remark 11, highlights the importance of having
suitable passivation techniques for S2, hence guaranteeing phys-
ically representative input-output dynamical models for any
marine structure. This is specifically illustrated in Section 4.1, in
terms of an offshore platform.

Another potential path is to apply a system identification
procedure to the input-output system  directly, that is, using
the frequency-response mapping associated with the closed-
loop behaviour. While one can guarantee input-output stabil-
ity relatively straightforwardly with this approach, passivation
is virtually always still required to have a physically consistent
model. This is specifically considered in Section 4.2, where the
response of a wave energy converter, computed directly from
input-output experimental data, is forced to be passive by means
of the presented technique.

4.1 Passivation of S2: An offshore platform

We consider model passivation for the radiation subsystem S2 of
an offshore platform, as schematically illustrated in Figure 3a. In
particular, the open-source hydrodynamic solver NEMOH [8] is
used to compute the non-parametric frequency-response asso-
ciated with system S2, considering that the platform is allowed
to move in two different degrees-of-freedom (DoFs): surge and
heave. The low-order mesh, utilised by NEMOH to charac-
terise the frequency-response of the platform, is illustrated in
Figure 3b.

Based on the frequency-domain results computed with
NEMOH, an internally stable, strictly proper (i.e. with D = 0),
non-passive, radiation system S2 is computed using moment-
matching [3, 30], defined over a state-space of dimension (order)
n = 26. Passivation is then applied to this system, by comput-
ing an optimal output perturbation ΔC , as detailed throughout
Section 3.

Figure 4 presents the sigma plot (i.e. the singular values
associated with the frequency-response mapping) for the non-
passive identified model (dashed-black), and the model arising
from subsequently applying the passivation technique presented
in this note (solid-green). Since, as can be appreciated from
Figure 4, these models are virtually identical in terms of their

FIGURE 4 Sigma plot for the non-passive identified model
(dashed-black) for the analysed offshore platform, and the model arising from
subsequently applying the passivation technique presented in this note
(solid-green)

FIGURE 5 Passivity indicator  for the non-passive (dashed-black), and
passive (green-solid) models, for the analysed offshore platform. The passivity
boundary is indicated with red color

associated gains, we define the following real-valued operator to
highlight any passivity violations: Let  ∶ ℝ → ℝ, 𝜔 ↦  (𝜔),
be defined as

 (𝜔) = 𝜆min{W ( j𝜔) +W ⋆( j𝜔)}, (17)

where, clearly, if  (𝜔) < 0, for any 𝜔 ∈ ℝ, then the trans-
fer function W is not PR, and hence its associated system
Σ is non-passive. Figure 5 presents the indicator (17) for
the non-passive system obtained using system identification
(dashed-black), and its corresponding passive counterpart
(solid-green), computed via the passivation technique proposed
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FIGURE 6 Set of eigenvalues associated with the closed-system  , for
both the non-passive model S2 (black), and its passive counterpart (green),
computed by means of the presented passivation strategy

in this paper. Clearly, the former presents negative values for
 , hence directly highlighting its non-passivity. It is noteworthy
that ‖ΔC‖2∕‖C‖2 = 0.0036 for this case, that is, only a very
small (in terms of the spectral norm) perturbation is required
to achieve passivation with the presented strategy.

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.3040 8.5209 −0.6882 1.7414 −1.1459 −0.9489

−6.9355 −1.3768 0.7790 −6.5867 4.5671 1.0491

0.0236 −0.1047 0.0426 9.7309 −2.5804 0.0849

−0.0980 −0.0337 −6.1438 −0.2455 0.3012 5.2141

0.0053 0.0175 0.0970 0.0623 −0.1963 −6.3684

−0.0084 −0.0074 −0.0196 −0.1749 2.8919 −0.0064

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0040

−0.0125

0.0002

−0.0001

−0.0000

−0.0001

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
C ⊺ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.7886

−1.8791

0.7261

−2.4309

1.6855

1.0541

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
ΔC ⊺ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.1342

0.0423

−0.0012

0.0017

−0.0011

0.0003

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(18)

Finally, and to highlight the importance of guaranteeing
passivity in the parameterisation of S2 for marine structures,
the set of eigenvalues associated with the closed-system  is
presented in Figure 6, for both the non-passive model (black),
and its passive counterpart (green). Note that, even though a
there is an almost negligible difference in the frequency-domain
response of the non-passive system S2, and its passive coun-
terpart (computed by means of the presented method), the
input-output response arising from feedback interconnection
with S2 renders, for this case, an internally unstable system,
hence losing any practical value in terms of analysis/prediction
of the platform motion.

4.2 Passivation of : A wave energy
converter

We consider, in this section, model passivation for the so-called
Wavestar WEC [31]. This device consists of a hemispherical hull
with a single operational DoF in pitch. On the full scale WEC,

FIGURE 7 1:20th scale experimental WEC system. Figure adapted from
[18]. The reader is referred to [18] for further details

the hydraulic power take-off (PTO) system consists of a cylin-
der, pumping fluid through a generator, with a rated power of
500 kW, for a device with 20 floaters [32]. Here, a single 1:20th
scale model of the full scale device, as shown in Figure 7, is
considered, with an electrical, direct drive, actuator PTO, fully
described in [18].

In particular, following the procedure described in [18], a
model for this device is obtained via black-box system iden-
tification, using input-output experimental data arising from
chirp experiments performed on the physical system, which is
located in a wave basin in Aalborg University, Denmark3. In
particular, subspace-based techniques [25] are utilised for iden-
tification, rendering the internally stable, strictly proper, non-
passive, input-output, system  , defined over a state-space of
dimension (order) n = 6, described in terms of the set of matri-
ces (A,B,C , 0) in (18). We apply the passivation method pre-
sented in this paper to calculate a perturbation ΔC as detailed in
(18). Note that ‖ΔC‖2∕‖C‖2 = 0.0369, so that the perturba-
tion computed to passivise system (A,B,C , 0) is, as in the case
of Section 4.1, very small in terms of spectral norm.

The Bode plot associated with the input-output response for
the corresponding WEC system is shown in Figure 8, includ-
ing the set of experimental empirical transfer function estimates
(solid-grey tones), the non-passive model identified via sub-
space methods (dashed-black), and the passive model computed
via subsequently applying the passivation technique proposed
in this note (solid-green). Furthermore, the Nyquist plot associ-
ated with non-passive (dashed-black) and passive (solid-green)
systems is presented in Figure 9, clearly illustrating the passivity
violation of the former, which has a Nyquist plot taking values
beyond the positive real semiplane.

5 CONCLUSION

We present, in this paper, an LMI-based passivation technique
for LTI systems, with specific application to physically represen-
tative mathematical modelling of marine structures. The pro-
posed technique is based upon finding a small perturbation,

3 Note that the validity and representativeness of the set of experimental data utilised in this
section has been discussed and analysed in detail in [18]. In particular, we refer the reader
to [18] for a detailed description of the full experimental campaign.
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FIGURE 8 Bode plot for the input-output system  for the experimental
WEC. Solid lines in grey tones indicate empirical transfer function estimates,
for different combination of input-output signals. The identified state-space
model is denoted with dashed-black line, while its passive counterpart,
obtained via the proposed passivation method, is denoted with solid-green

FIGURE 9 Nyquist plot for the input-output system  for the
experimental WEC. The identified state-space model is denoted with
dashed-black line, while its passive counterpart is denoted with solid-green

written in terms of the output matrix of a given state-space
system, such that the conditions of the KYP lemma hold, that
is, the transfer function associated with the perturbed system
is PR (or SPR, if strict passivity is to be imposed). The per-
formance of the strategy is illustrated in terms of two differ-
ent marine structures with zero forward speed, highlighting the
importance of such a technique in physically consistent mod-
elling in marine applications.
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