12 research outputs found
Wet-dry-wet drug screen leads to the synthesis of TS1, a novel compound reversing lung fibrosis through inhibition of myofibroblast differentiation
Therapies halting the progression of fibrosis are ineffective and limited. Activated myofibroblasts are emerging as important targets in the progression of fibrotic diseases. Previously, we performed a high-throughput screen on lung fibroblasts and subsequently demonstrated that the inhibition of myofibroblast activation is able to prevent lung fibrosis in bleomycin-treated mice. High-throughput screens are an ideal method of repurposing drugs, yet they contain an intrinsic limitation, which is the size of the library itself. Here, we exploited the data from our âwetâ screen and used âdryâ machine learning analysis to virtually screen millions of compounds, identifying novel anti-fibrotic hits which target myofibroblast differentiation, many of which were structurally related to dopamine. We synthesized and validated several compounds ex vivo (âwetâ) and confirmed that both dopamine and its derivative TS1 are powerful inhibitors of myofibroblast activation. We further used RNAi-mediated knock-down and demonstrated that both molecules act through the dopamine receptor 3 and exert their anti-fibrotic effect by inhibiting the canonical transforming growth factor ÎČ pathway. Furthermore, molecular modelling confirmed the capability of TS1 to bind both human and mouse dopamine receptor 3. The anti-fibrotic effect on human cells was confirmed using primary fibroblasts from idiopathic pulmonary fibrosis patients. Finally, TS1 prevented and reversed disease progression in a murine model of lung fibrosis. Both our interdisciplinary approach and our novel compound TS1 are promising tools for understanding and combating lung fibrosis
ENPP1 Affects Insulin Action and Secretion: Evidences from In Vitro Studies
The aim of this study was to deeper investigate the mechanisms through which
ENPP1, a negative modulator of insulin receptor (IR) activation, plays a role on
insulin signaling, insulin secretion and eventually glucose metabolism. ENPP1
cDNA (carrying either K121 or Q121 variant) was transfected in HepG2 liver-, L6
skeletal muscle- and INS1E beta-cells. Insulin-induced IR-autophosphorylation
(HepG2, L6, INS1E), Akt-Ser473,
ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9
phosphorylation (HepG2, L6), PEPCK mRNA levels (HepG2) and
2-deoxy-D-glucose uptake (L6) was studied. GLUT 4 mRNA
(L6), insulin secretion and caspase-3 activation (INS1E) were also investigated.
Insulin-induced IR-autophosphorylation was decreased in HepG2-K, L6-K, INS1E-K
(20%, 52% and 11% reduction vs. untransfected cells) and
twice as much in HepG2-Q, L6-Q, INS1E-Q (44%, 92% and 30%).
Similar data were obtained with Akt-Ser473,
ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 in
HepG2 and L6. Insulin-induced reduction of PEPCK mRNA was progressively lower in
untransfected, HepG2-K and HepG2-Q cells (65%, 54%, 23%).
Insulin-induced glucose uptake in untransfected L6 (60% increase over
basal), was totally abolished in L6-K and L6-Q cells. GLUT 4 mRNA was slightly
reduced in L6-K and twice as much in L6-Q (13% and 25% reduction
vs. untransfected cells). Glucose-induced insulin secretion was 60%
reduced in INS1E-K and almost abolished in INS1E-Q. Serum deficiency activated
caspase-3 by two, three and four folds in untransfected INS1E, INS1E-K and
INS1E-Q. Glyburide-induced insulin secretion was reduced by 50% in
isolated human islets from homozygous QQ donors as compared to those from KK and
KQ individuals. Our data clearly indicate that ENPP1, especially when the Q121
variant is operating, affects insulin signaling and glucose metabolism in
skeletal muscle- and liver-cells and both function and survival of insulin
secreting beta-cells, thus representing a strong pathogenic factor predisposing
to insulin resistance, defective insulin secretion and glucose metabolism
abnormalities
Adiponectin increases glucose-induced insulin secretion through the activation of lipid oxidation
The expression of adiponectin receptors has been demonstrated in human and rat pancreatic beta cells, where globular (g) adiponectin rescues rat beta cells from cytokine and fatty acid-induced apoptosis. The aim of our study was to evaluate whether adiponectin has a direct effect on insulin secretion and the metabolic pathways involved. Purified human pancreatic islets and rat beta cells (INS-1E) were exposed (1 h) to g-adiponectin, and glucose-induced insulin secretion was measured. A significant increase in glucose-induced insulin secretion was observed in the presence of g-adiponectin (1 nmol/l) with respect to control cells in both human pancreatic islets (n = 5, p < 0.05) and INS-1E cells (n = 5, p < 0.001). The effect of globular adiponectin on insulin secretion was independent of AMP-dependent protein kinase (AMPK) activation or glucose oxidation. In contrast, g-adiponectin significantly increased oleate oxidation (n = 5, p < 0.05), and the effect of g-adiponectin (p < 0.001) on insulin secretion by INS-1E was significantly reduced in the presence of etomoxir (1 ÎŒmol/l), an inhibitor of fatty acid beta oxidation. g-Adiponectin potentiates glucose-induced insulin secretion in both human pancreatic islets and rat beta cells via an AMPK independent pathway. Increased fatty acid oxidation rather than augmented glucose oxidation is the mechanism responsible. Overall, our data indicate that, in addition to its anti-apoptotic action, g-adiponectin has another direct effect on beta cells by potentiating insulin secretion. Adiponectin, therefore, in addition to its well-known effect on insulin sensitivity, has important effects at the pancreatic level
Comparison Between Folic Acid and gH625 Peptide-Based Functionalization of Fe3O4 Magnetic Nanoparticles for Enhanced Cell Internalization
Abstract A versatile synthetic route based on magnetic Fe3O4 nanoparticle (MNP) prefunctionalization with a phosphonic acid monolayer has been used to covalently bind the gH625 peptide on the nanoparticle surface. gH625 is a membranotropic peptide capable of easily crossing the membranes of various cells including the typical human blood-brain barrier components. A similar synthetic route was used to prepare another class of MNPs having a functional coating based on PEG, rhodamine, and folic acid, a well-known target molecule, to compare the performance of the two cell-penetrating systems (i.e., gH625 and folic acid). Our results demonstrate that the uptake of gH625-decorated MNPs in immortalized human brain microvascular endothelial cells after 24Â h is more evident compared to folic acid-functionalized MNPs as evidenced by confocal laser scanning microscopy. On the other hand, both functionalized systems proved capable of being internalized in a brain tumor cell line (i.e., glioblastoma A-172). These findings indicate that the functionalization of MNPs with gH625 improves their endothelial cell internalization, suggesting a viable strategy in designing functional nanostructures capable of first crossing the BBB and, then, of reaching specific tumor brain cells