9,249 research outputs found

    Ultra-Light Dark Matter in Ultra-Faint Dwarf Galaxies

    Get PDF
    Cold Dark Matter (CDM) models struggle to match the observations at galactic scales. The tension can be reduced either by dramatic baryonic feedback effects or by modifying the particle physics of CDM. Here, we consider an ultra-light scalar field DM particle manifesting a wave nature below a DM particle mass-dependent Jeans scale. For DM mass m∼10−22eVm\sim10^{-22}{\rm eV}, this scenario delays galaxy formation and avoids cusps in the center of the dark matter haloes. We use new measurements of half-light mass in ultra-faint dwarf galaxies Draco II and Triangulum II to estimate the mass of the DM particle in this model. We find that if the stellar populations are within the core of the density profile then the data are in agreement with a wave dark matter model having a DM particle with m∼3.7−5.6×10−22eVm\sim 3.7-5.6\times 10^{-22}{\rm eV}. The presence of this extremely light particle will contribute to the formation of a central solitonic core replacing the cusp of a Navarro-Frenk-White profile and bringing predictions closer to observations of cored central density in dwarf galaxies.Comment: matching version accepted by MNRA

    Bethe Ansatz approach to quench dynamics in the Richardson model

    Get PDF
    By instantaneously changing a global parameter in an extended quantum system, an initially equilibrated state will afterwards undergo a complex non-equilibrium unitary evolution whose description is extremely challenging. A non-perturbative method giving a controlled error in the long time limit remained highly desirable to understand general features of the quench induced quantum dynamics. In this paper we show how integrability (via the algebraic Bethe ansatz) gives one numerical access, in a nearly exact manner, to the dynamics resulting from a global interaction quench of an ensemble of fermions with pairing interactions (Richardson's model). This possibility is deeply linked to the specific structure of this particular integrable model which gives simple expressions for the scalar product of eigenstates of two different Hamiltonians. We show how, despite the fact that a sudden quench can create excitations at any frequency, a drastic truncation of the Hilbert space can be carried out therefore allowing access to large systems. The small truncation error which results does not change with time and consequently the method grants access to a controlled description of the long time behavior which is a hard to reach limit with other numerical approaches.Comment: Proceedings of the CRM (Montreal) workshop on Integrable Quantum Systems and Solvable Statistical Mechanics Model

    Experimental study of vapor-cell magneto-optical traps for efficient trapping of radioactive atoms

    Full text link
    We have studied magneto-optical traps (MOTs) for efficient on-line trapping of radioactive atoms. After discussing a model of the trapping process in a vapor cell and its efficiency, we present the results of detailed experimental studies on Rb MOTs. Three spherical cells of different sizes were used. These cells can be easily replaced, while keeping the rest of the apparatus unchanged: atomic sources, vacuum conditions, magnetic field gradients, sizes and power of the laser beams, detection system. By direct comparison, we find that the trapping efficiency only weakly depends on the MOT cell size. It is also found that the trapping efficiency of the MOT with the smallest cell, whose diameter is equal to the diameter of the trapping beams, is about 40% smaller than the efficiency of larger cells. Furthermore, we also demonstrate the importance of two factors: a long coated tube at the entrance of the MOT cell, used instead of a diaphragm; and the passivation with an alkali vapor of the coating on the cell walls, in order to minimize the losses of trappable atoms. These results guided us in the construction of an efficient large-diameter cell, which has been successfully employed for on-line trapping of Fr isotopes at INFN's national laboratories in Legnaro, Italy.Comment: 9 pages, 7 figures, submitted to Eur. Phys. J.

    Dynamic crossover in the global persistence at criticality

    Full text link
    We investigate the global persistence properties of critical systems relaxing from an initial state with non-vanishing value of the order parameter (e.g., the magnetization in the Ising model). The persistence probability of the global order parameter displays two consecutive regimes in which it decays algebraically in time with two distinct universal exponents. The associated crossover is controlled by the initial value m_0 of the order parameter and the typical time at which it occurs diverges as m_0 vanishes. Monte-Carlo simulations of the two-dimensional Ising model with Glauber dynamics display clearly this crossover. The measured exponent of the ultimate algebraic decay is in rather good agreement with our theoretical predictions for the Ising universality class.Comment: 5 pages, 2 figure

    Dynamical correlation functions of the mesoscopic pairing model

    Get PDF
    We study the dynamical correlation functions of the Richardson pairing model (also known as the reduced or discrete-state BCS model) in the canonical ensemble. We use the Algebraic Bethe Ansatz formalism, which gives exact expressions for the form factors of the most important observables. By summing these form factors over a relevant set of states, we obtain very precise estimates of the correlation functions, as confirmed by global sum-rules (saturation above 99% in all cases considered). Unlike the case of many other Bethe Ansatz solvable theories, simple two-particle states are sufficient to achieve such saturations, even in the thermodynamic limit. We provide explicit results at half-filling, and discuss their finite-size scaling behavior

    From Prostitution to Domesticity: Charting the Intersections fo Bodily Habituations and Conditions of Precarity in John Cleland\u27s Memoirs of a Woman of Pleasure

    Get PDF
    Contemporary theoretical criticism of John Cleland\u27s Memoirs\u27 of a Woman of Pleasure has undergone a shift, centering on reconsidering whether Memoirs\u27 sexual politics is ultimately liberatory or oppressive. In light of this formulation, this paper deploys Judith Butler\u27s theories of gender performativity and precarity to conceptualize how, while the surface politics of the body in Memoirs liberates libidinal energies that grant both the protagonist, Fanny, and the reader access to pleasure, it also participates in regulating and territorializing ambiguous bodies and erotic desire in the interest of an eighteenth-century English heteronormative ethics of pleasure. Charting the trajectory of Fanny as prostitute through the course of the text, I identify an emergent pattern: As Fanny ascends the prostitution hierarchy, she moves closer to the realization of a domestic fantasy. Along the way, she cultivates an alliance of fallen women that mitigates their collective state of precarity, and internalizes a discourse of taste, which allows her to eventually conform to established norms of embodiment that qualify her as a subject of recognition. She thus extinguishes her state of precarity and allows access to the benefits of patriarchy

    Nonequilibrium critical dynamics of the two-dimensional Ising model quenched from a correlated initial state

    Full text link
    The universality class, even the order of the transition, of the two-dimensional Ising model depends on the range and the symmetry of the interactions (Onsager model, Baxter-Wu model, Turban model, etc.), but the critical temperature is generally the same due to self-duality. Here we consider a sudden change in the form of the interaction and study the nonequilibrium critical dynamical properties of the nearest-neighbor model. The relaxation of the magnetization and the decay of the autocorrelation function are found to display a power law behavior with characteristic exponents that depend on the universality class of the initial state.Comment: 6 pages, 5 figures, submitted to Phys. Rev.

    Dynamical density-density correlations in the one-dimensional Bose gas

    Full text link
    The zero-temperature dynamical structure factor of the one-dimensional Bose gas with delta-function interaction (Lieb-Liniger model) is computed using a hybrid theoretical/numerical method based on the exact Bethe Ansatz solution, which allows to interpolate continuously between the weakly-coupled Thomas-Fermi and strongly-coupled Tonks-Girardeau regimes. The results should be experimentally accessible with Bragg spectroscopy.Comment: 4 pages, 3 figures, published versio

    Entanglement Entropy of Two Spheres

    Full text link
    We study the entanglement entropy S_{AB} of a massless free scalar field on two spheres A and B whose radii are R_1 and R_2, respectively, and the distance between the centers of them is r. The state of the massless free scalar field is the vacuum state. We obtain the result that the mutual information S_{A;B}:=S_A+S_B-S_{AB} is independent of the ultraviolet cutoff and proportional to the product of the areas of the two spheres when r>>R_1,R_2, where S_A and S_B are the entanglement entropy on the inside region of A and B, respectively. We discuss possible connections of this result with the physics of black holes.Comment: 17 pages, 9 figures; v4, added references, revised argument in section V, a typo in eq.(25) corrected, published versio

    Quantum phase transitions in the Kondo-necklace model: Perturbative continuous unitary transformation approach

    Full text link
    The Kondo-necklace model can describe magnetic low-energy limit of strongly correlated heavy fermion materials. There exist multiple energy scales in this model corresponding to each phase of the system. Here, we study quantum phase transition between the Kondo-singlet phase and the antiferromagnetic long-range ordered phase, and show the effect of anisotropies in terms of quantum information properties and vanishing energy gap. We employ the "perturbative continuous unitary transformations" approach to calculate the energy gap and spin-spin correlations for the model in the thermodynamic limit of one, two, and three spatial dimensions as well as for spin ladders. In particular, we show that the method, although being perturbative, can predict the expected quantum critical point, where the gap of low-energy spectrum vanishes, which is in good agreement with results of other numerical and Green's function analyses. In addition, we employ concurrence, a bipartite entanglement measure, to study the criticality of the model. Absence of singularities in the derivative of concurrence in two and three dimensions in the Kondo-necklace model shows that this model features multipartite entanglement. We also discuss crossover from the one-dimensional to the two-dimensional model via the ladder structure.Comment: 12 pages, 6 figure
    • …
    corecore