7 research outputs found
Vertex Operator Superalgebras and Odd Trace Functions
We begin by reviewing Zhu's theorem on modular invariance of trace functions
associated to a vertex operator algebra, as well as a generalisation by the
author to vertex operator superalgebras. This generalisation involves objects
that we call `odd trace functions'. We examine the case of the N=1
superconformal algebra. In particular we compute an odd trace function in two
different ways, and thereby obtain a new representation theoretic
interpretation of a well known classical identity due to Jacobi concerning the
Dedekind eta function.Comment: 13 pages, 0 figures. To appear in Conference Proceedings `Advances in
Lie Superalgebras
On classical finite and affine W-algebras
This paper is meant to be a short review and summary of recent results on the
structure of finite and affine classical W-algebras, and the application of the
latter to the theory of generalized Drinfeld-Sokolov hierarchies.Comment: 12 page
Classical W-algebras within the theory of Poisson vertex algebras
We review the Poisson vertex algebra theory approach to classical W-algebras. First, we provide a description of the Drinfeld-Sokolov Hamiltonian reduction for the construction of classical W-algebras within the framework of Poisson vertex algebras and we establish, under certain sufficient conditions, the applicability of the Lenard-Magri scheme of integrability and the existence of the corresponding integrable hierarchy of bi-Hamiltonian equations. Then we provide a Poisson vertex algebra analogue of the Gelfand-Dickey construction of classical W-algebras and we show the relations with the Drinfeld-Sokolov Hamiltonian reduction. It will be also shown that classical W-algebras are the Poisson vertex algebras which are of interest from the conformal field theory point of view
MasterPVA and WAlg: Mathematica packages for Poisson vertex algebras and classical affine -algebras
We give an introduction to the Mathematica packages MasterPVA and MasterPVAmulti used to compute λ-brackets in Poisson vertex algebras, which play an important role in the theory of infinite-dimensional Hamiltonian systems. As an application, we give an introduction to the Mathematica package WAlg aimed to compute the λ-brackets among the generators of classical affine W-algebras. The use of these packages is shown by providing some explicit examples