4,652 research outputs found
Quantum Correlations in Two-Particle Anderson Localization
We predict the quantum correlations between non-interacting particles
evolving simultaneously in a disordered medium. While the particle density
follows the single-particle dynamics and exhibits Anderson localization, the
two-particle correlation develops unique features that depend on the quantum
statistics of the particles and their initial separation. On short time scales,
the localization of one particle becomes dependent on whether the other
particle is localized or not. On long time scales, the localized particles show
oscillatory correlations within the localization length. These effects can be
observed in Anderson localization of non-classical light and ultra-cold atoms.Comment: 4 pages, 4 figures, comments welcom
Bloch oscillations of Path-Entangled Photons
We show that when photons in N-particle path entangled |N,0> + |0,N> state
undergo Bloch oscillations, they exhibit a periodic transition between
spatially bunched and antibunched states. The transition occurs even when the
photons are well separated in space. We study the scaling of the
bunching-antibunching period, and show it is proportional to 1/N.Comment: An error in figure 1b of the original manuscript was corrected, and
the period was redefine
Simulation of Hydrogen Generation from Methane Partial Oxidation in a Plasma Fuel Reformer
A model for the chemistry in a plasma fuel reformer or plasmatron has been developed. The plasma fuel reformer is set up to produce syngas (hydrogen and carbon monoxide gas mixture) from partial oxidation of hydrocarbons. The behavior of methane as fuel has been investigated to characterize and simulate the plasmatron performance. The goal of this work has been improved understanding of the physical/chemical processes within the reactor. The simulation tool used was CHEMKIN 3.7, using the GRI methane combustion mechanism. The Partially Stirred Reactor application (PASR) simulates random mixing by a frequency mixing parameter, which is directly dependant of the system fluid dynamic properties. The fuel reformer was designed as a reactor where combustion is initiated by an electric discharge due to ohmic heating of the arc region. From discharge observations, energy estimations and model simulations, it was found that the electric arc initiates combustion by locally raising the temperature and then propagating the reaction by heat and mass transfer/mixing to the surroundings. Simulation results demonstrated that there is an optimum characteristic mixing time for each residence time, depending on the initial temperature reached at the arc. It was also found that for given power input into the system, the more spread the energy is, or the more mass is heated to a moderate temperature, the better the calculated performance
Thermal collapse of a granular gas under gravity
Free cooling of a gas of inelastically colliding hard spheres represents a
central paradigm of kinetic theory of granular gases. At zero gravity the
temperature of a freely cooling homogeneous granular gas follows a power law in
time. How does gravity, which brings inhomogeneity, affect the cooling? We
combine molecular dynamics simulations, a numerical solution of hydrodynamic
equations and an analytic theory to show that a granular gas cooling under
gravity undergoes thermal collapse: it cools down to zero temperature and
condenses on the bottom of the container in a finite time.Comment: 4 pages, 12 eps figures, to appear in PR
Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas
We employ Navier-Stokes granular hydrodynamics to investigate the long-time
behavior of clustering instability in a freely cooling dilute granular gas in
two dimensions. We find that, in circular containers, the homogeneous cooling
state (HCS) of the gas loses its stability via a sub-critical pitchfork
bifurcation. There are no time-independent solutions for the gas density in the
supercritical region, and we present analytical and numerical evidence that the
gas develops thermal collapse unarrested by heat diffusion. To get more
insight, we switch to a simpler geometry of a narrow-sector-shaped container.
Here the HCS loses its stability via a transcritical bifurcation. For some
initial conditions a time-independent inhomogeneous density profile sets in,
qualitatively similar to that previously found in a narrow-channel geometry.
For other initial conditions, however, the dilute gas develops thermal collapse
unarrested by heat diffusion. We determine the dynamic scalings of the flow
close to collapse analytically and verify them in hydrodynamic simulations. The
results of this work imply that, in dimension higher than one, Navier-Stokes
hydrodynamics of a dilute granular gas is prone to finite-time density blowups.
This provides a natural explanation to the formation of densely packed clusters
of particles in a variety of initially dilute granular flows.Comment: 18 pages, 19 figure
- …