66 research outputs found

    Atmospheric boundary layer wind profile at a flat coastal site – wind speed lidar measurements and mesoscale modeling results

    Get PDF
    Wind profiles up to 600 m height are investigated. Measurements of mean wind speed profiles were obtained from a novel wind lidar and compared to model simulations from a mesoscale model (WRF-ARW v3.1). It is found that WRF is able to predict the mean wind profile rather well and typically within 1&ndash;2 m s<sup>&minus;1</sup> to the individual measured values. WRF underpredicts the normalized wind profile, especially for stable conditions. The effect of baroclinicity on the upper part of the wind profile is discussed

    FUS-DDIT3 Prevents the Development of Adipocytic Precursors in Liposarcoma by Repressing PPARγ and C/EBPα and Activating eIF4E

    Get PDF
    FUS-DDIT3 is a chimeric protein generated by the most common chromosomal translocation t(12;16)(q13;p11) linked to liposarcomas, which are characterized by the accumulation of early adipocytic precursors. Current studies indicate that FUS-DDIT3- liposarcoma develops from uncommitted progenitors. However, the precise mechanism whereby FUS-DDIT3 contributes to the differentiation arrest remains to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS: Here we have characterized the adipocyte regulatory protein network in liposarcomas of FUS-DITT3 transgenic mice and showed that PPARgamma2 and C/EBPalpha expression was altered. Consistent with in vivo data, FUS-DDIT3 MEFs and human liposarcoma cell lines showed a similar downregulation of both PPARgamma2 and C/EBPalpha expression. Complementation studies with PPARgamma but not C/EBPalpha rescued the differentiation block in committed adipocytic precursors expressing FUS-DDIT3. Our results further show that FUS-DDIT3 interferes with the control of initiation of translation by upregulation of the eukaryotic translation initiation factors eIF2 and eIF4E both in FUS-DDIT3 mice and human liposarcomas cell lines, explaining the shift towards the truncated p30 isoform of C/EBPalpha in liposarcomas. Suppression of the FUS-DDIT3 transgene did rescue this adipocyte differentiation block. Moreover, eIF4E was also strongly upregulated in normal adipose tissue of FUS-DDIT3 transgenic mice, suggesting that overexpression of eIF4E may be a primary event in the initiation of liposarcomas. Reporter assays showed FUS-DDIT3 is involved in the upregulation of eIF4E in liposarcomas and that both domains of the fusion protein are required for affecting eIF4E expression. CONCLUSIONS/SIGNIFICANCE: Taken together, this study provides evidence of the molecular mechanisms involve in the disruption of normal adipocyte differentiation program in liposarcoma harbouring the chimeric gene FUS-DDIT3.Research in ISG group is supported partially by FEDER and by MEC (SAF2006-03726), Junta de Castilla y León (CSI03A05), FIS (PI050087, PI050116), Fundación de Investigación MMA, Federación de Cajas de Ahorro Castilla y León (I Convocatoria de Ayudas para Proyectos de Investigación Biosanitaria con Células Madre), CDTEAM project (CENIT-Ingenio 2010) and MEC Consolider-Ingenio 2010 (Ref. CSD2007-0017).Research in ISG group is supported partially by FEDER and by MEC (SAF2006-03726 and PETRI N° 95-0913.OP), Junta de Castilla y León (CSI03A05), FIS (PI050087, PI050116), Fundación de Investigación MMA, Federación de Cajas de Ahorro Castilla y León (I Convocatoria de Ayudas para Proyectos de Investigación Biosanitaria con Células Madre), CDTEAM project (CENIT-Ingenio 2010) and MEC Consolider-Ingenio 2010 (Ref. CSD2007-0017). MSM is supported by the Ramon y Cajal Scientific Spanish Program, Fondo Investigacion Sanitaria (FIS PI04-1271), Junta de Castilla y León (SA085A06) and Fundación Manuel Solorzano, University of Salamanca.Peer reviewe

    The expression of CCAAT/enhancer binding protein (C/EBP) in the human ovary in vivo: specific increase in C/EBPβ during epithelial tumour progression

    Get PDF
    The CCAAT/enhancer binding protein (C/EBP) family of transcription factors is involved in metabolism and differentiation of cells, especially in rodent liver cells and adipocytes. Their roles in vivo and in particular during pathophysiological conditions in humans are largely unknown. We have investigated the presence of C/EBPα, -β, -δ and -ζ in normal ovaries and in epithelial ovarian tumours of different stages. Immunohistochemical experiments demonstrated that C/EBPα and C/EBPβ were preferentially expressed in epithelial/tumour cells irrespective of stage or grade of the tumour. C/EBPβ was located in the nuclei of the cells, in contrast to C/EBPα, which was present only in the cytoplasm of these cells. The nuclear localization of C/EBPβ indicates an active role of this transcription factor in tumour cells, whereas the cytoplasmic distribution suggests a more passive function of C/EBPα. C/EBPδ and -ζ demonstrated a more diverse distribution with predominant localization to epithelial cells, but stromal distribution was also noted. The intracellular distribution was confined to both the nucleus and the cytoplasm for C/EBPδ and -ζ. Western blotting demonstrated that C/EBPα, -β, -δ and -ζ were present in a majority of the samples. The amount of C/EBPβ increased markedly with malignancy, i.e. with degree of dedifferentiation, while the other members of the C/EBP family displayed a more constant expression level. These results demonstrate an association between the expression of members of the C/EBP family and the formation of epithelial ovarian tumours, with C/EBPβ as a potential marker for these tumours. As C/EBPβ is known to be expressed during proliferation of cells in vitro, it may participate in the proliferative process of ovarian epithelial tumour cells in vivo and play a central role in tumour progression. © 1999 Cancer Research Campaig
    • …
    corecore