1,881 research outputs found

    Efficient calculation of local dose distribution for response modelling in proton and ion beams

    Full text link
    We present an algorithm for fast and accurate computation of the local dose distribution in MeV beams of protons, carbon ions or other heavy-charged particles. It uses compound Poisson-process modelling of track interaction and succesive convolutions for fast computation. It can handle mixed particle fields over a wide range of fluences. Since the local dose distribution is the essential part of several approaches to model detector efficiency or cellular response it has potential use in ion-beam dosimetry and radiotherapy.Comment: 9 pages, 3 figure

    Dynamic behavior of driven interfaces in models with two absorbing states

    Full text link
    We study the dynamics of an interface (active domain) between different absorbing regions in models with two absorbing states in one dimension; probabilistic cellular automata models and interacting monomer-dimer models. These models exhibit a continuous transition from an active phase into an absorbing phase, which belongs to the directed Ising (DI) universality class. In the active phase, the interface spreads ballistically into the absorbing regions and the interface width diverges linearly in time. Approaching the critical point, the spreading velocity of the interface vanishes algebraically with a DI critical exponent. Introducing a symmetry-breaking field hh that prefers one absorbing state over the other drives the interface to move asymmetrically toward the unpreferred absorbing region. In Monte Carlo simulations, we find that the spreading velocity of this driven interface shows a discontinuous jump at criticality. We explain that this unusual behavior is due to a finite relaxation time in the absorbing phase. The crossover behavior from the symmetric case (DI class) to the asymmetric case (directed percolation class) is also studied. We find the scaling dimension of the symmetry-breaking field yh=1.21(5)y_h = 1.21(5).Comment: 5 pages, 5 figures, Revte

    Eigenvalue Separation in Some Random Matrix Models

    Full text link
    The eigenvalue density for members of the Gaussian orthogonal and unitary ensembles follows the Wigner semi-circle law. If the Gaussian entries are all shifted by a constant amount c/Sqrt(2N), where N is the size of the matrix, in the large N limit a single eigenvalue will separate from the support of the Wigner semi-circle provided c > 1. In this study, using an asymptotic analysis of the secular equation for the eigenvalue condition, we compare this effect to analogous effects occurring in general variance Wishart matrices and matrices from the shifted mean chiral ensemble. We undertake an analogous comparative study of eigenvalue separation properties when the size of the matrices are fixed and c goes to infinity, and higher rank analogues of this setting. This is done using exact expressions for eigenvalue probability densities in terms of generalized hypergeometric functions, and using the interpretation of the latter as a Green function in the Dyson Brownian motion model. For the shifted mean Gaussian unitary ensemble and its analogues an alternative approach is to use exact expressions for the correlation functions in terms of classical orthogonal polynomials and associated multiple generalizations. By using these exact expressions to compute and plot the eigenvalue density, illustrations of the various eigenvalue separation effects are obtained.Comment: 25 pages, 9 figures include

    Optimal transport on wireless networks

    Get PDF
    We present a study of the application of a variant of a recently introduced heuristic algorithm for the optimization of transport routes on complex networks to the problem of finding the optimal routes of communication between nodes on wireless networks. Our algorithm iteratively balances network traffic by minimizing the maximum node betweenness on the network. The variant we consider specifically accounts for the broadcast restrictions imposed by wireless communication by using a different betweenness measure. We compare the performance of our algorithm to two other known algorithms and find that our algorithm achieves the highest transport capacity both for minimum node degree geometric networks, which are directed geometric networks that model wireless communication networks, and for configuration model networks that are uncorrelated scale-free networks.Comment: 5 pages, 4 figure

    The three species monomer-monomer model in the reaction-controlled limit

    Full text link
    We study the one dimensional three species monomer-monomer reaction model in the reaction controlled limit using mean-field theory and dynamic Monte Carlo simulations. The phase diagram consists of a reactive steady state bordered by three equivalent adsorbing phases where the surface is saturated with one monomer species. The transitions from the reactive phase are all continuous, while the transitions between adsorbing phases are first-order. Bicritical points occur where the reactive phase simultaneously meets two adsorbing phases. The transitions from the reactive to an adsorbing phase show directed percolation critical behaviour, while the universal behaviour at the bicritical points is in the even branching annihilating random walk class. The results are contrasted and compared to previous results for the adsorption-controlled limit of the same model.Comment: 12 pages using RevTeX, plus 4 postscript figures. Uses psfig.sty. accepted to Journal of Physics

    Interacting Monomer-Dimer Model with Infinitely Many Absorbing States

    Full text link
    We study a modified version of the interacting monomer-dimer (IMD) model that has infinitely many absorbing (IMA) states. Unlike all other previously studied models with IMA states, the absorbing states can be divided into two equivalent groups which are dynamically separated infinitely far apart. Monte Carlo simulations show that this model belongs to the directed Ising universality class like the ordinary IMD model with two equivalent absorbing states. This model is the first model with IMA states which does not belong to the directed percolation (DP) universality class. The DP universality class can be restored in two ways, i.e., by connecting the two equivalent groups dynamically or by introducing a symmetry-breaking field between the two groups.Comment: 5 pages, 5 figure

    Mean-Field Analysis and Monte Carlo Study of an Interacting Two-Species Catalytic Surface Reaction Model

    Get PDF
    We study the phase diagram and critical behavior of an interacting one dimensional two species monomer-monomer catalytic surface reaction model with a reactive phase as well as two equivalent adsorbing phase where one of the species saturates the system. A mean field analysis including correlations up to triplets of sites fails to reproduce the phase diagram found by Monte Carlo simulations. The three phases coexist at a bicritical point whose critical behavior is described by the even branching annihilating random walk universality class. This work confirms the hypothesis that the conservation modulo 2 of the domain walls under the dynamics at the bicritical point is the essential feature in producing critical behavior different from directed percolation. The interfacial fluctuations show the same universal behavior seen at the bicritical point in a three-species model, supporting the conjecture that these fluctuations are a new universal characteristic of the model.Comment: 11 pages using RevTeX, plus 4 Postscript figures. Uses psfig.st
    corecore