67 research outputs found

    New nucleic dyes for pico-and nanoplankton cytometric analysis

    Get PDF
    Flow cytometry (FCM) is a promising tool in the field of aquatic phytoplankton ecology because it allows for multi-parameter assessment of the physiological state of individual cells in an algal population. It can help to elucidate major questions such as phytoplankton taxa identification, the evaluation of cell quantity and viability, and the measuring of phytoplankton and general microbial metabolic activities. Traditionally, microalgal characterization is performed by microscopic analysis using UV-excited nuclear dyes (e.g. Hoechst and DAPI) or dyes that are excited in the blue-green part of the spectrum such as propidium iodide and eosin. The development of multi-laser cytometric systems has widened the possibilities for multi-parametric analysis and cell sorting of phytoplankton populations. Notwithstanding, significant algae autofluorescence originating from different types of chlorophyll and accessory pigments may overlap with propidium iodide and/or eosin staining and affect the resolution of algae clusters and cell sorting

    New nucleic dyes for pico-and nanoplankton cytometric analysis

    Get PDF
    Flow cytometry (FCM) is a promising tool in the field of aquatic phytoplankton ecology because it allows for multi-parameter assessment of the physiological state of individual cells in an algal population. It can help to elucidate major questions such as phytoplankton taxa identification, the evaluation of cell quantity and viability, and the measuring of phytoplankton and general microbial metabolic activities. Traditionally, microalgal characterization is performed by microscopic analysis using UV-excited nuclear dyes (e.g. Hoechst and DAPI) or dyes that are excited in the blue-green part of the spectrum such as propidium iodide and eosin. The development of multi-laser cytometric systems has widened the possibilities for multi-parametric analysis and cell sorting of phytoplankton populations. Notwithstanding, significant algae autofluorescence originating from different types of chlorophyll and accessory pigments may overlap with propidium iodide and/or eosin staining and affect the resolution of algae clusters and cell sorting

    A flow cytometry-based method to simplify the analysis and quantification of protein association to chromatin in mammalian cells.

    Get PDF
    Protein accumulation on chromatin has traditionally been studied using immunofluorescence microscopy or biochemical cellular fractionation followed by western immunoblot analysis. As a way to improve the reproducibility of this kind of analysis, to make it easier to quantify and to allow a streamlined application in high-throughput screens, we recently combined a classical immunofluorescence microscopy detection technique with flow cytometry. In addition to the features described above, and by combining it with detection of both DNA content and DNA replication, this method allows unequivocal and direct assignment of cell cycle distribution of protein association to chromatin without the need for cell culture synchronization. Furthermore, it is relatively quick (takes no more than a working day from sample collection to quantification), requires less starting material compared with standard biochemical fractionation methods and overcomes the need for flat, adherent cell types that are required for immunofluorescence microscopy.Research in our laboratory is funded by Cancer Research UK (CRUK; programme grant C6/A11224), the European Research Council and the European Community Seventh Framework Programme (grant agreement no. HEALTH¬‐F2¬‐2010¬‐259893 (DDResponse)). Core funding is provided by Cancer Research UK (C6946/A14492) and the Wellcome Trust (WT092096). J.V.F. is funded by Cancer Research UK programme grant C6/A11224 and the Ataxia Telangiectasia Society. S.P.J. receives his salary from the University of Cambridge, supplemented by CRUK.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nprot.2015.06

    Innate immunity in ocular Chlamydia trachomatis infection: contribution of IL8 and CSF2 gene variants to risk of trachomatous scarring in Gambians

    Get PDF
    BACKGROUND: Trachoma, a chronic keratoconjunctivitis caused by Chlamydia trachomatis, is the world's commonest infectious cause of blindness. Blindness is due to progressive scarring of the conjunctiva (trachomatous scarring) leading to in-turning of eyelashes (trichiasis) and corneal opacification. We evaluated the contribution of genetic variation across the chemokine and cytokine clusters in chromosomes 4q and 5q31 respectively to risk of scarring trachoma and trichiasis in a large case-control association study in a Gambian population. METHODS: Linkage disequilibrium (LD) mapping was used to investigate risk effects across the 4q and 5q31 cytokine clusters in relation to the risk of scarring sequelae of ocular Ct infection. Disease association and epistatic effects were assessed in a population based study of 651 case-control pairs by conditional logistic regression (CLR) analyses. RESULTS: LD mapping suggested that genetic effects on risk within these regions mapped to the pro-inflammatory innate immune genes interleukin 8 (IL8) and granulocyte-macrophage colony stimulatory factor (CSF2) loci. The IL8-251 rare allele (IL8-251 TT) was associated with protection from scarring trachoma (OR = 0.29 p = 0.027). The intronic CSF2_27348 A allele in chromosome 5q31 was associated with dose dependent protection from trichiasis, with each copy of the allele reducing risk by 37% (p = 0.005). There was evidence of epistasis, with effects at IL8 and CSF2 loci interacting with those previously reported at the MMP9 locus, a gene acting downstream to IL8 and CSF2 in the inflammatory cascade. CONCLUSION: innate immune response SNP-haplotypes are linked to ocular Ct sequelae. This work illustrates the first example of epistatic effects of two genes on trachoma

    Circulating microparticles: square the circle

    Get PDF
    Background: The present review summarizes current knowledge about microparticles (MPs) and provides a systematic overview of last 20 years of research on circulating MPs, with particular focus on their clinical relevance. Results: MPs are a heterogeneous population of cell-derived vesicles, with sizes ranging between 50 and 1000 nm. MPs are capable of transferring peptides, proteins, lipid components, microRNA, mRNA, and DNA from one cell to another without direct cell-to-cell contact. Growing evidence suggests that MPs present in peripheral blood and body fluids contribute to the development and progression of cancer, and are of pathophysiological relevance for autoimmune, inflammatory, infectious, cardiovascular, hematological, and other diseases. MPs have large diagnostic potential as biomarkers; however, due to current technological limitations in purification of MPs and an absence of standardized methods of MP detection, challenges remain in validating the potential of MPs as a non-invasive and early diagnostic platform. Conclusions: Improvements in the effective deciphering of MP molecular signatures will be critical not only for diagnostics, but also for the evaluation of treatment regimens and predicting disease outcomes

    Processes in regulatory systems during development of various adaptational reactions and evaluation of functional state dynamics in the organism

    No full text
    The paper describes some concepts on processes occurring in the neuroendocrine and immune systems during development of general unspecific adaptational reactions. The concepts are based on the known evidence on the changes in the regulatory systems and the previously identified peculiarities in correlations between the levels of biogenic amines in blood and the organs, respectively, under various adaptational reactions, as well as the known effects of biogenic amines. A number of practical consequences significant for the correct evaluation of the functional state in humans and animals are also considered herein
    corecore