135 research outputs found
Toxicity comparison of silver nanoparticles synthesized by physical and chemical methods to tadpole (Rana ridibunda)
One of the possible threats in increasing use of nanomaterials is the emergence of toxicity in humans and other animals which is discussed in nanotoxicology. In addition to toxic effects of nanomaterials themselves, different chemical precursors which are usually used in bottom-up approaches for production of nanomaterials may have secondary toxic effects in living organisms. In contrast, less use of chemicals in top-down approaches may reduce these secondary effects. To test this hypothesis, toxic effects of two types of silver nanoparticles (AgNPs) produced by physical (top-down) and chemical (bottom-up) methods were investigated and compared on the tadpole, Rana ridibunda survival. The estimated 48 h LC50 values of AgNPs produced by chemical and physical methods for tadpoles were 0.055 ± 0.004 and 0.296 ± 0.085 mg.L-1, respectively. No observed effect concentration, lowest observed effect concentration, maximum acceptable toxicant concentration and median lethal concentration of AgNPs produced by chemical method were respectively 3.42, 4.50, 4.84 and 5.38 times less than those produced by physical method. Therefore, approving the mentioned hypothesis, it was revealed that AgNPs produced by chemical method are more toxic than those generated by physical method. However, it seems totally that AgNPs regardless of the method used for their production, have toxic effects on aquatic organisms and so, inhibiting their accidental or intentional entrance into the aquatic ecosystems should be more considered
Trapped ion mobility spectrometry and PASEF enable in-depth lipidomics from minimal sample amounts
A comprehensive characterization of the lipidome from limited starting material remains very challenging. Here we report a high-sensitivity lipidomics workflow based on nanoflow liquid chromatography and trapped ion mobility spectrometry (TIMS). Taking advantage of parallel accumulation-serial fragmentation (PASEF), we fragment on average 15 precursors in each of 100 ms TIMS scans, while maintaining the full mobility resolution of co-eluting isomers. The acquisition speed of over 100 Hz allows us to obtain MS/MS spectra of the vast majority of isotope patterns. Analyzing 1 mu L of human plasma, PASEF increases the number of identified lipids more than three times over standard TIMS-MS/MS, achieving attomole sensitivity. Building on high intra- and inter-laboratory precision and accuracy of TIMS collisional cross sections (CCS), we compile 1856 lipid CCS values from plasma, liver and cancer cells. Our study establishes PASEF in lipid analysis and paves the way for sensitive, ion mobility-enhanced lipidomics in four dimensions
Catastrophic Fermi surface reconstruction in the shape-memory alloy AuZn
AuZn undergoes a shape-memory transition at 67 K. The de Haas van Alphen
effect persists to 100 K enabling the observation of a change in the quantum
oscillation spectrum indicative of a catastrophic Fermi surface reconstruction
at the transition. Coexistence of both Fermi surfaces at low temperatures is
suggestive of an intrinsic phase separation in the bulk of the material. In
addition, a Dingle analysis reveals a sharp change in the scattering mechanism
at a threshold cyclotron radius, which we suggest to be related to the
underlying microstructure that drives the shape-memory effect.Comment: 4 pages, 4 figure
Fermi Surface as a Driver for the Shape-Memory Effect in AuZn
Martensites are materials that undergo diffusionless, solid-state
transitions. The martensitic transition yields properties that depend on the
history of the material and may allow it to recover its previous shape after
plastic deformation. This is known as the shape-memory effect (SME). We have
succeeded in identifying the primary electronic mechanism responsible for the
martensitic transition in the shape-memory alloy AuZn by using Fermi-surface
measurements (de Haas-van Alphen oscillations) and band-structure calculations.
This strongly suggests that electronic band structure is an important
consideration in the design of future SME alloys
Soft modes of collective domain-wall vibrations in epitaxial ferroelectric thin films
Mechanical restoring forces acting on ferroelastic domain walls displaced
from the equilibrium positions in epitaxial films are calculated for various
modes of their cooperative translational oscillations. For vibrations of the
domain-wall superlattice with the wave vectors corresponding to the center and
boundaries of the first Brillouin zone, the soft modes are singled out that are
distinguished by a minimum magnitude of the restoring force. It is shown that,
in polydomain ferroelectric thin films, the soft modes of wall vibrations may
create enormously large contribution to the film permittivity.Comment: 6 pages, 3 figure
Ab initio study of ferroelectric domain walls in PbTiO3
We have investigated the atomistic structure of the 180-degree and 90-degree
domain boundaries in the ferroelectric perovskite compound PbTiO3 using a
first-principles ultrasoft-pseudopotential approach. For each case we have
computed the position, thickness and creation energy of the domain walls, and
an estimate of the barrier height for their motion has been obtained. We find
both kinds of domain walls to be very narrow with a similar width of the order
of one to two lattice constants. The energy of the 90-dergree domain wall is
calculated to be 35 mJ/m^2, about a factor of four lower than the energy of its
180-degree counterpart, and only a miniscule barrier for its motion is found.
As a surprising feature we detected a small offset of 0.15-0.2 eV in the
electrostatic potential across the 90-degree domain wall.Comment: 12 pages, with 9 postscript figures embedded. Uses REVTEX and epsf
macros. Also available at
http://www.physics.rutgers.edu/~dhv/preprints/bm_dw/index.htm
Quaternary glacial history of the Mediterranean mountains
Glacial and periglacial landforms are widespread in the mountains of the Mediterranean region. The evidence for glacial and periglacial activity has been studied for over 120 years and it is possible to identify three phases of development in this area of research. First, a pioneer phase characterized by initial descriptive observations of glacial landforms; second, a mapping phase whereby the detailed distribution of glacial landforms and sediments have been depicted on geomorphological maps; and, third, an advanced phase characterized by detailed understanding of the geochronology of glacial sequences using radiometric dating alongside detailed sedimentological and stratigraphical analyses. It is only relatively recently that studies of glaciated mountain terrains in the Mediterranean region have reached an advanced phase and it is now clear from radiometric dating programmes that the Mediterranean mountains have been glaciated during multiple glacial cycles. The most extensive phases of glaciation appear to have occurred during the Middle Pleistocene. This represents a major shift from earlier work whereby many glacial sequences were assumed to have formed during the last cold stage. Glacial and periglacial deposits from multiple Quaternary cold stages constitute a valuable palaeoclimatic record. This is especially so in the Mediterranean mountains, since mountain glaciers in this latitudinal zone would have been particularly sensitive to changes in the global climate system. © 2006 Edward Arnold (Publishers) Ltd
- …