18,159 research outputs found

    1/S-expansion study of spin waves in a two-dimensional Heisenberg antiferromagnet

    Full text link
    We study the effects of quantum fluctuations on excitation spectra in the two-dimensional Heisenberg antiferromagnet by means of the 1/S expansion. We calculate the spin-wave dispersion and the transverse dynamical structure factor up to the second order of 1/S in comparison with inelastic neutron scattering experiments. The spin-wave energy at momentum (Ï€,0)(\pi,0) is found to be about 2% smaller than that at (Ï€/2,Ï€/2)(\pi/2,\pi/2) due to the second-order correction. In addition, we study the dimensional crossover from two dimensions to one dimension by weakening exchange couplings in one direction. It is found that the second-order correction becomes large with approaching the quasi-one dimensional situation and makes the spin-wave energy approach to the des Cloizeaux-Pearson boundary for S=1/2S=1/2. The transverse dynamical structure factor is also calculated up to the second order of 1/S. It is shown that the intensity of spin-wave peak is strongly reduced while the intensity of three-spin-wave continuum becomes large and exceeds that of the spin-wave peak in the quasi-one dimensional situation.Comment: 20 pages, 6 figures, revised text, added curves in Figs. 3 and 6 for J'/J=0.075 and corrected typos in Table

    The Top Triangle Moose

    Get PDF
    We introduce a deconstructed model that incorporates both Higgsless and top-color mechanisms. The model alleviates the typical tension in Higgsless models between obtaining the correct top quark mass and keeping delta-rho small. It does so by singling out the top quark mass generation as arising from a Yukawa coupling to an effective top-Higgs which develops a small vacuum expectation value, while electroweak symmetry breaking results largely from a Higgsless mechanism. As a result, the heavy partners of the SM fermions can be light enough to be seen at the LHC.Comment: To appear in proceedings of SCGT09, Nagoya, Japan. 5 page

    The Temperature Evolution of the Out-of-Plane Correlation Lengths of Charge-Stripe Ordered La(1.725)Sr(0.275)NiO(4)

    Full text link
    The temperature dependence of the magnetic order of stripe-ordered La(1.725)Sr(0.275)NiO(4) is investigated by neutron diffraction. Upon cooling, the widths if the magnetic Bragg peaks are observed to broaden. The degree of broadening is found to be very different for l = odd-integer and l = even-integer magnetic peaks. We argue that the observed behaviour is a result of competition between magnetic and charge order.Comment: 3 figure

    Can the frequency-dependent specific heat be measured by thermal effusion methods?

    Full text link
    It has recently been shown that plane-plate heat effusion methods devised for wide-frequency specific-heat spectroscopy do not give the isobaric specific heat, but rather the so-called longitudinal specific heat. Here it is shown that heat effusion in a spherical symmetric geometry also involves the longitudinal specific heat.Comment: Paper presented at the Fifth International Workshop on Complex Systems (Sendai, September, 2007), to appear in AIP Conference Proceeding

    Evolution of magnetic states in frustrated diamond lattice antiferromagnetic Co(Al1-xCox)2O4 spinels

    Get PDF
    Using neutron powder diffraction and Monte-Carlo simulations we show that a spin-liquid regime emerges at $all compositions in the diamond-lattice antiferromagnets Co(Al1-xCox)2O4. This spin-liquid regime induced by frustration due to the second-neighbour exchange coupling J2, is gradually superseded by antiferromagnetic collinear long-range order (k=0) at low temperatures. Upon substitution of Al3+ by Co3+ in the octahedral B-site the temperature range occupied by the spin-liquid regime narrows and TN increases. To explain the experimental observations we considered magnetic anisotropy D or third-neighbour exchange coupling J3 as degeneracy-breaking perturbations. We conclude that Co(Al1-xCox)2O4 is below the theoretical critical point J2/J1=1/8, and that magnetic anisotropy assists in selecting a collinear long-range ordered ground state, which becomes more stable with increasing x due to a higher efficiency of O-Co3+-O as an interaction path compared to O-Al3+-O

    Coupled Magnetic Excitations in Single Crystal PrBa2Cu3O6.2

    Full text link
    The dispersion of the low-energy magnetic excitations of the Pr sublattice in PrBa2Cu3O6.2 is determined by inelastic neutron scattering measurements on a single crystal. The dispersion, which shows the effect of interactions with the Cu spin-waves, is well described by a model of the coupled Cu-Pr magnetic system. This enables values for the principal exchange constants to be determined, which suggest that both Pr-Pr and Cu-Pr interactions are important in producing the anomalously high ordering temperature of the Pr sublattice. Measurements of the Cu optic spin wave mode show that the inter-layer Cu-Cu exchange is significantly lower than in YBa2Cu3O6.2.Comment: To be published Phys. Rev. Let

    2D orbital-like magnetic order in La2−xSrxCuO4{\rm La_{2-x}Sr_xCuO_4}

    Full text link
    In high temperature copper oxides superconductors, a novel magnetic order associated with the pseudogap phase has been identified in two different cuprate families over a wide region of temperature and doping. We here report the observation below 120 K of a similar magnetic ordering in the archetypal cuprate La2−xSrxCuO4{\rm La_{2-x}Sr_xCuO_4} (LSCO) system for x=0.085. In contrast to the previous reports, the magnetic ordering in LSCO is {\it\bf only} short range with an in-plane correlation length of ∼\sim 10 \AA\ and is bidimensional (2D). Such a less pronounced order suggests an interaction with other electronic instabilities. In particular, LSCO also exhibits a strong tendency towards stripes ordering at the expense of the superconducting state.Comment: 4 figures, submitted to Phys. Rev. Let

    Simulating spin-3/2 particles at colliders

    Full text link
    Support for interactions of spin-3/2 particles is implemented in the FeynRules and ALOHA packages and tested with the MadGraph 5 and CalcHEP event generators in the context of three phenomenological applications. In the first, we implement a spin-3/2 Majorana gravitino field, as in local supersymmetric models, and study gravitino and gluino pair-production. In the second, a spin-3/2 Dirac top-quark excitation, inspired from compositness models, is implemented. We then investigate both top-quark excitation and top-quark pair-production. In the third, a general effective operator for a spin-3/2 Dirac quark excitation is implemented, followed by a calculation of the angular distribution of the s-channel production mechanism.Comment: 20 pages, 7 figure
    • …
    corecore