25,113 research outputs found

    Memory, space and time: Researching children's lives

    Get PDF
    This article discusses the research approach in 'Pathways through Childhood', a small qualitative study drawing on memories of childhood. The research explores how wider social arrangements and social change influence children's everyday lives.The article discusses the way that the concepts of social memory, space and time have been drawn on to access and analyse children's experiences, arguing that attention to the temporal and spatial complexity of childhood reveals less visible yet formative influences and connections. Children's everyday engagements involve connections between past and present time, between children, families, communities and nations, and between different places. Children carve out space and time for themselves from these complex relations. © The Author(s) 2010

    Technological Change and the Environment

    Get PDF
    Environmental policy discussions increasingly focus on issues related to technological change. This is partly because the environmental consequences of social activity are frequently affected by the rate and direction of technological change, and partly because environmental policy interventions can themselves create constraints and incentives that have significant effects on the path of technological progress. This paper, prepared as a chapter draft for the forthcoming Handbook of Environmental Economics (North-Holland/Elsevier Science), summarizes for environmental economists current thinking on technological change in the broader economics literature, surveys the growing economic literature on the interaction between technology and the environment, and explores the normative implications of these analyses. We begin with a brief overview of the economics of technological change, and then examine three important areas where technology and the environment intersect: the theory and empirical evidence of induced innovation and the related literature on the effects of environmental policy on the creation of new, environmentally friendly technology; the theory and empirics of environmental issues related to technology diffusion; and analyses of the comparative technological impacts of alternative environmental policy instruments. We conclude with suggestions for further research on technological change and the environment.

    The Pure Spinor Formulation of Superstrings

    Full text link
    In this lectures we outline the construction of pure spinor superstrings. We consider both the open and closed pure spinor superstrings in critical and noncritical dimensions and on flat and curved target spaces with RR flux. We exhibit the integrability properties of pure spinor superstrings on curved backgrounds with RR fluxes.Comment: These lectures have been given in the RTN Winter School on Strings, Supergravity and Gauge Theories, CERN (2008). 32 pages, a typo correcte

    Coherent Excitation of the 6S1/2 to 5D3/2 Electric Quadrupole Transition in 138Ba+

    Full text link
    The electric dipole-forbidden, quadrupole 6S1/2 5D3/2 transition in Ba+ near 2051 nm, with a natural linewidth of 13 mHz, is attractive for potential observation of parity non-conservation, and also as a clock transition for a barium ion optical frequency standard. This transition also offers a direct means of populating the metastable 5D3/2 state to measure the nuclear magnetic octupole moment in the odd barium isotopes. Light from a diode-pumped, solid state Tm,Ho:YLF laser operating at 2051 nm is used to coherently drive this transition between resolved Zeeman levels in a single trapped 138Ba+ ion. The frequency of the laser is stabilized to a high finesse Fabry Perot cavity at 1025 nm after being frequency doubled. Rabi oscillations on this transition indicate a laser-ion coherence time of 3 ms, most likely limited by ambient magnetic field fluctuations.Comment: 5 pages, 5 figure

    The stability of adaptive synchronization of chaotic systems

    Full text link
    In past works, various schemes for adaptive synchronization of chaotic systems have been proposed. The stability of such schemes is central to their utilization. As an example addressing this issue, we consider a recently proposed adaptive scheme for maintaining the synchronized state of identical coupled chaotic systems in the presence of a priori unknown slow temporal drift in the couplings. For this illustrative example, we develop an extension of the master stability function technique to study synchronization stability with adaptive coupling. Using this formulation, we examine local stability of synchronization for typical chaotic orbits and for unstable periodic orbits within the synchronized chaotic attractor (bubbling). Numerical experiments illustrating the results are presented. We observe that the stable range of synchronism can be sensitively dependent on the adaption parameters, and we discuss the strong implication of bubbling for practically achievable adaptive synchronization.Comment: 21 pages, 6 figure

    Aging research using the common marmoset: Focus on aging interventions

    Get PDF
    Traditional animal models have been used to make seminal discoveries in biomedical research including a better understanding of the biology of the aging process. However, translation of these findings from laboratory to clinical populations has likely been hindered due to fundamental biological and physiological differences between common laboratory animals and humans. Non-human primates (NHP) may serve as an effective bridge towards translation, and short-lived NHP like the common marmoset offer many advantages as models for aging research. Here, we address these advantages and discuss what is currently understood about the changes in physiology and pathology that occur with age in the marmoset. In addition, we discuss how aging research might best utilize this model resource, and outline an ongoing study to address whether pharmaceutical intervention can slow aging in the marmoset. With this manuscript, we clarify how common marmosets might assist researchers in geroscience as a potential model for pre-clinical translation

    The role of electron-electron interactions in two-dimensional Dirac fermions

    Full text link
    The role of electron-electron interactions on two-dimensional Dirac fermions remains enigmatic. Using a combination of nonperturbative numerical and analytical techniques that incorporate both the contact and long-range parts of the Coulomb interaction, we identify the two previously discussed regimes: a Gross-Neveu transition to a strongly correlated Mott insulator, and a semi-metallic state with a logarithmically diverging Fermi velocity accurately described by the random phase approximation. Most interestingly, experimental realizations of Dirac fermions span the crossover between these two regimes providing the physical mechanism that masks this velocity divergence. We explain several long-standing mysteries including why the observed Fermi velocity in graphene is consistently about 20 percent larger than the best values calculated using ab initio and why graphene on different substrates show different behavior.Comment: 11 pages, 4 figure
    corecore