14 research outputs found

    PENGENDALIAN KECEPATAN KONSTAN MOVEMENT SLIDER CAMERA DENGAN MENGGUNAKAN METODE ZIEGLER-NICHOLS BERBASIS ARDUINO

    No full text
    Camera angle atau sudut penempatan kamera memegang peranan yang sangat penting pada sinematografi. Bagaimanapun juga sebuah film dibentuk oleh beberapa banyak shot yang membutuhkan penempatan kamera di tempat yang terbaik bagi penonton untuk mengikuti cerita dalam film. Penempatan angle dan pergerakan footage yang baik tentu saja bisa memperkuat dramatik sebuah film karena angle dan pergerakan footage pada kamera dapat di umpamakan sebagai mata penonton yang melihat  secara langsung informasi visual. Penempatan sudut dan pergerakan yang konstan pada kamera akan memposisikan penonton lebih dekat dengan action yang ada dalam film, misalnya dengan teknik close up dan lain sebagainya. Kualitas footage pada sebuah film ini sangat dipengaruhi dari beberapa faktor di antaranya analisis pada skenario, penggunaan jenis lensa dan movement camera yang smooth dari kanan bergerak ke kiri atau sebaliknya yang biasa disebut dengan pergerakan crab. Maka dari itu, diperlukan cara untuk mengontrol pergerakan crab kamera dengan menggunakan slider camera minimalis yang digerakkan secara otomatis menggunakan motor DC dan dapat diaplikasikan dengan batas range kemiringan slider tertentu dengan PID untuk mempertahankan kecepatan pada putaran motor DC yang digunakan dengan metode Ziegler-Nichols II. Berdasarkan  respon  sistem  yang  diperoleh  dari  pengujian  dengan menggunakan metode kedua dari teori Ziegler-Nichols, didapat nilai parameter kontroler PID dengan nilai Kp = 54, Ki = 55,3846, dan Kd = 13,1625 dengan error steady state rata-rata dari semua hasil respon didapat sebesar 2,075483%.Kata kunci: slider, kamera, PID,konstan, Ziegler-Nichols. ABSTRACT Camera angle or camera placement angle plays a very important role in cinematography. After all, a movie is formed by several shots that require camera placement in the best position for the audience to follow the story in the movie. The placement of angles and good footage movement can certainly reinforce the dramatic of a movie because the angle and movement of footage in the camera can be defined as the eyes of the spectators who directly see the visual information. Camera placement angle and a constant movement of the camera will make the audience feel closer to the action in the film, for example with close-up techniques and so on. The quality of footage in a film is strongly influenced by several factors including the analysis of the scenario, the use of lens type and smooth movement of the camera from the right to the left or vice versa commonly called by crab movement. Therefore, it is necessary to control the crab movement camera by using a minimalist camera slider which is driven automatically using a DC motor and can be applied with a slope range of a certain degree of slider with PID to maintain the speed of DC motor rotation based on Ziegler-Nichols II method. Based on the system response from the test using the second method of Ziegler-Nicholes theory, it obtained the parameter values ​​of PID controller with the value of Kp = 54, Ki = 55,3846, and Kd = 13.1625 with error steady state average of all response as much as 2.075483%. Keywords: slider, camera, PID,constant, Ziegler-Nichols

    PENGENDALIAN KECEPATAN KONSTAN MOVEMENT SLIDER CAMERA DENGAN MENGGUNAKAN METODE ZIEGLER-NICHOLS BERBASIS ARDUINO

    No full text
    Camera angle atau sudut penempatan kamera memegang peranan yang sangat penting pada sinematografi. Bagaimanapun juga sebuah film dibentuk oleh beberapa banyak shot yang membutuhkan penempatan kamera di tempat yang terbaik bagi penonton untuk mengikuti cerita dalam film. Penempatan angle dan pergerakan footage yang baik tentu saja bisa memperkuat dramatik sebuah film karena angle dan pergerakan footage pada kamera dapat di umpamakan sebagai mata penonton yang melihat  secara langsung informasi visual. Penempatan sudut dan pergerakan yang konstan pada kamera akan memposisikan penonton lebih dekat dengan action yang ada dalam film, misalnya dengan teknik close up dan lain sebagainya. Kualitas footage pada sebuah film ini sangat dipengaruhi dari beberapa faktor di antaranya analisis pada skenario, penggunaan jenis lensa dan movement camera yang smooth dari kanan bergerak ke kiri atau sebaliknya yang biasa disebut dengan pergerakan crab. Maka dari itu, diperlukan cara untuk mengontrol pergerakan crab kamera dengan menggunakan slider camera minimalis yang digerakkan secara otomatis menggunakan motor DC dan dapat diaplikasikan dengan batas range kemiringan slider tertentu dengan PID untuk mempertahankan kecepatan pada putaran motor DC yang digunakan dengan metode Ziegler-Nichols II. Berdasarkan  respon  sistem  yang  diperoleh  dari  pengujian  dengan menggunakan metode kedua dari teori Ziegler-Nichols, didapat nilai parameter kontroler PID dengan nilai Kp = 54, Ki = 55,3846, dan Kd = 13,1625 dengan error steady state rata-rata dari semua hasil respon didapat sebesar 2,075483%.Kata kunci: slider, kamera, PID,konstan, Ziegler-Nichols. ABSTRACT Camera angle or camera placement angle plays a very important role in cinematography. After all, a movie is formed by several shots that require camera placement in the best position for the audience to follow the story in the movie. The placement of angles and good footage movement can certainly reinforce the dramatic of a movie because the angle and movement of footage in the camera can be defined as the eyes of the spectators who directly see the visual information. Camera placement angle and a constant movement of the camera will make the audience feel closer to the action in the film, for example with close-up techniques and so on. The quality of footage in a film is strongly influenced by several factors including the analysis of the scenario, the use of lens type and smooth movement of the camera from the right to the left or vice versa commonly called by crab movement. Therefore, it is necessary to control the crab movement camera by using a minimalist camera slider which is driven automatically using a DC motor and can be applied with a slope range of a certain degree of slider with PID to maintain the speed of DC motor rotation based on Ziegler-Nichols II method. Based on the system response from the test using the second method of Ziegler-Nicholes theory, it obtained the parameter values ​​of PID controller with the value of Kp = 54, Ki = 55,3846, and Kd = 13.1625 with error steady state average of all response as much as 2.075483%. Keywords: slider, camera, PID,constant, Ziegler-Nichols

    Numerical simulation for entrainment of forced turbulent fountains

    Get PDF
    Numerical simulations are used to investigate the entrainment for forced turbulent fountains over a range of Reynolds numbers and Froude numbers, with ranges based on the fountain source properties. Other fountain properties such as height and width are also examined to provide information on the general structure of the fountains. The results show that the fountains have minimal Reynolds number dependency, while they have a strong linear relation with the Froude number for the cases considered in this study. The entrainment coefficient is obtained as well as scaling constants for height and width in terms of the Froude number. References G. Abraham. Jets with negative buoyancy in homogeneous fluid. J. Hydraul. Res., 5(4):235–248, 1967. doi:10.1080/00221686709500209. W. D. Baines, J. S. Turner, and I. H. Campbell. Turbulent fountains in an open chamber. J. Fluid Mech., 212:557–592, 1990. doi:10.1017/S0022112090002099. L. J. Bloomfield and R. C. Kerr. A theoretical model of a turbulent fountain. J. Fluid Mech., 424:197–216, 2000. doi:10.1017/S0022112000001907. H. C. Burridge and G. R. Hunt. Entrainment by turbulent fountains. J. Fluid Mech., 790:407–418, 2016. doi:10.1017/jfm.2016.16. I. H. Campbell and J. S. Turner. Fountains in magma chambers. J. Petrol., 30(4):885–923, 1989. doi:10.1093/petrology/30.4.885. P. D. Friedman, V. D. Vadakoot, W. J. Meyer, and S. Carey. Instability threshold of a negatively buoyant fountain. Exp. Fluids, 42(5):751–759, 2007. doi:10.1007/s00348-007-0283-5. D. D. Gray and A. Giorgini. The validity of the Boussinesq approximation for liquids and gases. Int. J. Heat Mass Tran., 19(5):545–551, 1976. doi:10.1016/0017-9310(76)90168-X. N. B. Kaye and G. R. Hunt. Weak fountains. J. Fluid Mech., 558:319–328, 2006. doi:10.1017/S0022112006000383. B. P. Leonard and S. Mokhtari. Beyond first-order upwinding: The ultra-sharp alternative for non-oscillatory steady-state simulation of convection. Int. J. Numer. Meth. Eng., 30(4):729–766, 1990. doi:10.1002/nme.1620300412. T. J. McDougall. Negatively buoyant vertical jets. Tellus, 33(3):313–320, 1981. doi:10.3402/tellusa.v33i3.10718. T. Mizushina, F. Ogino, H. Takeuchi, and H. Ikawa. An experimental study of vertical turbulent jet with negative buoyancy. Warme Stoffubertrag., 16(1): 15–21, 1982. doi:10.1007/BF01322802. B. R. Morton. Forced plumes. J. Fluid Mech., 5(1):151–163, 1959. doi:10.1017/S002211205900012X. S. E. Norris. A parallel Navier–Stokes solver for natural convection and free surface flow. PhD thesis, University of Sydney, 2000. J. S. Turner. Jets and plumes with negative or reversing buoyancy. J. Fluid Mech., 26(4):779–792, 1966. doi:10.1017/S0022112066001526. N. Williamson, N. Srinarayana, S. W. Armfield, G. D. McBain, and W. Lin. Low-Reynolds-number fountain behaviour. J. Fluid Mech., 608:297–317, 2008. doi:10.1017/S0022112008002310. N. Williamson, S. W. Armfield, and W. Lin. Forced turbulent fountain flow behaviour. J. Fluid Mech., 671:535–558, 2011. doi:10.1017/S0022112010005872. H. Zhang and R. E. Baddour. Maximum penetration of vertical round dense jets at small and large Froude numbers. J. Hydraul. Eng., 124(5):550–553, 1998. doi:10.1061/(ASCE)0733-9429(1998)124:5(550)

    School-administered weekly iron-folate supplements improve hemoglobin and ferritin concentrations in Malaysian adolescent girls

    No full text
    Background: Iron deficiency and its consequent anemia constitute the commonest micronutrient deficiency in the world. Objective: We investigated whether long-term, weekly iron-folate supplements administered at school would improve hemoglobin and ferritin concentrations in adolescent girls, including those with mild-to-moderate anemia and hemoglobin concentrations indicating borderline anemia. Design: Subjects were 266 girls with hemoglobin concentrations of 80-119.9 g/L (group A) and 358 girls with hemoglobin concentrations of 120-130 g/L (group B) who were otherwise healthy. Two hundred sixty-six girls in group A and 268 girls in group B were randomly assigned to receive either 60 or 120 mg Fe plus 3.5 mg folic acid weekly for 22 wk. Ninety of the girls in group B wi:re randomly assigned to receive only 5 mg folic acid weekly. Capillary hemoglobin and plasma ferritin were measured at baseline and after 12 and 22 wk of supplementation. Results: By the end of the study, 2% of the girls had dropped out and >96% hart taken greater than or equal to 20 of the 22 tablets; side effects were minimal. Mean plasma ferritin increased significantly in all iron-supplemented groups, independently of initial hemoglobin values and iron doses. Ferritin concentrations decreased in the girls supplemented with folic acid only. As expected, hemoglobin responses to iron were higher in group A than in group B and increases were positively correlated with initial plasma ferritin. Hemoglobin failed to respond to folate supplementation if initial plasma ferritin concentrations were low. Mean hemoglobin increased significantly and consistently in relation to the length of treatment. Conclusion: Long-term, weekly iron-folate supplementation was found to be a practical, safe, effective, and inexpensive method for improving iron nutrition in adolescent schoolgirls
    corecore