18 research outputs found
The use of desalinated-dried jellyfish and rice bran for controlling weeds and rice yield
To achieve higher rice production, rice-growing countries have used great amounts of synthetic chemical compounds (chemical fertilizers and pesticides) that can have adverse effects on the environment and humans. Organic products and organic farming technologies are friendlier to the environment and more conducive to sustainable agriculture but require different inputs, knowledge and skills. Weed control is one of the major challenges in organic rice cultivation. The present study proposes and tests the use of desalinated-dried jellyfish chips in the development of sustainable rice production. Vast amounts of jellyfishes have been found in the Sea of Japan (Nomura's jellyfish, Nemopilema nomurai Kishinouye) and Japan inland sea areas (Water jelly, Aurelia aurita (Linne)), and jellyfish populationc can have a negative impact on the fishery industry. In this context, the use of jellyfish in organic agriculture has attracted attention. The present study found that the application of desalinated-dried jellyfish (small pieces of jellyfish which are desalinated and dried) mixed in soil before transplanting can effectively control weeds in rice fields and has a nutrient effect because of the high nitrogen content (12-13%). Desalinated-dried jellyfish has potential as an agricultural material that replaces herbicides and chemical fertilizers. It also contributes to environment-friendly rice production. It was found that both desalinated-dried jellyfish and rice bran effectively controlled rice weeds when mixed in the soil before the transplanting.The grain yields of desalinated-dried jellyfish treatments were consistently higher than the corresponding rice bran treatments. The rice yield from the desalinated-dried jellyfish treatments were comparable to the chemical fertilizer treatment.
Promotive effects of hyperthermia on the inhibition of DNA synthesis in Ehrlich ascites tumor cells by eicosapentaenoic and docosahexaenoic acids
Aim: To evaluate inhibitory effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on DNA synthesis in combination with hyperthermia in vitro. Methods: A suspension of Ehrlich ascites tumor cells (EAT) was mixed with DHA or EPA in a glass tube, heated at 37 Β°C, 40 Β°C, or 42 Β°C for 1 h in a water bath, and cultured at 37 Β°C for 19 or 96 h. DNA synthesis was assayed by monitoring of the incorporation of [3H]-thymidine into the acid-insoluble fraction. DHA or EPA incorporated into EAT cells was extracted and measured by thin-layer chromatography and gas-liquid chromatography. Results: The inhibition of DNA synthesis by EPA or DHA increased markedly upon the treatment at 42 Β°C and 40 Β°C compared to that at 37 Β°C. At 37 Β°C, inhibitory action of EPA was more potent than that of DHA at low concentrations (at 50 Β΅M β DNA synthesis level: EPA, 63.1%; DHA, 87.9%), whereas inhibitory action of DHA was higher at 150 Β΅M (16.7%, 4.4%, ibid.). The effect of DHA compared to EPA was more marked at 40 Β°C (29.0%, 19.2% at 100 Β΅M) or 42 Β°C (19.7%, 10.6% at 100 Β΅M). Evaluation of DNA synthesis rate in the cells treated for 1 h by EPA or DHA with the next culturing of EAT cells for 19 h resulted in the enhanced inhibitory activity of EPA even at concentrations as low as 50 Β΅M at either 37 Β°C (0.5%, 11.3%) or 42 Β°C (0.6%, 4.5%), which in these conditions was higher than that of DHA. At the same time the rate of incorporation of EPA in EAT cells at 37 Β°C or 42 Β°C was lower than that of DHA. Conclusion: Administration of DHA or EPA in vitro significantly inhibit DNA synthesis, and such effect is enhanced by combination of PUFAs with hyperthermia.Π¦Π΅Π»Ρ: ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΡ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΡΡΡΠ΅Π΅ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ ΡΠΉΠΊΠΎΠ·ΠΎΠΏΠ΅Π½ΡΠ°Π΅Π½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ (EPA) ΠΈ Π΄ΠΎΠΊΠΎΠ·Π°Π³Π΅ΠΊΡΠ°Π΅Π½ΠΎΠ²ΠΎΠΉ ΠΊΠΈΡΠ»ΠΎΡΡ (DHA)
Π½Π° ΡΠΈΠ½ΡΠ΅Π· ΠΠΠ Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°ΡΠΈΠΈ Ρ Π³ΠΈΠΏΠ΅ΡΡΠ΅ΡΠΌΠΈΠ΅ΠΉ Π² ΠΌΠΎΠ΄Π΅Π»ΠΈ in vitro. ΠΠ΅ΡΠΎΠ΄Ρ: ΡΡΡΠΏΠ΅Π½Π·ΠΈΡ ΠΊΠ»Π΅ΡΠΎΠΊ Π°ΡΡΠΈΡΠ½ΠΎΠΉ ΠΊΠ°ΡΡΠΈΠ½ΠΎΠΌΡ ΠΡΠ»ΠΈΡ
Π°
(EAT) ΡΠΌΠ΅ΡΠΈΠ²Π°Π»ΠΈ Ρ DHA ΠΈΠ»ΠΈ EPA Π² ΡΡΠ΅ΠΊΠ»ΡΠ½Π½ΠΎΠΉ ΠΏΡΠΎΠ±ΠΈΡΠΊΠ΅, ΠΈΠ½ΠΊΡΠ±ΠΈΡΠΎΠ²Π°Π»ΠΈ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 1 Ρ ΠΏΡΠΈ 37 Β°C, 40 Β°C ΠΈΠ»ΠΈ 42 Β°C
Π² Π²ΠΎΠ΄ΡΠ½ΠΎΠΉ Π±Π°Π½Π΅ ΠΈ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π»ΠΈ ΠΏΡΠΈ 37 Β°C 19 ΠΈΠ»ΠΈ 96 Ρ. Π‘ΠΈΠ½ΡΠ΅Π· ΠΠΠ ΠΎΡΠ΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠΎ ΡΡΠΎΠ²Π½Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ [3
H]-ΡΠΈΠΌΠΈΠ΄ΠΈΠ½Π°.
DHA ΠΈΠ»ΠΈ EPA, Π²ΠΊΠ»ΡΡΠΈΠ²ΡΠΈΠ΅ΡΡ Π² ΠΊΠ»Π΅ΡΠΊΠΈ EAT cells, ΡΠΊΡΡΡΠ°Π³ΠΈΡΠΎΠ²Π°Π»ΠΈ, Π° ΠΈΡ
ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»ΡΠ»ΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΡΠΎΠ½ΠΊΠΎΡΠ»ΠΎΠΉΠ½ΠΎΠΉ
ΠΈ Π³Π°Π·ΠΎΠΆΠΈΠ΄ΠΊΠΎΡΡΠ½ΠΎΠΉ Ρ
ΡΠΎΠΌΠ°ΡΠΎΠ³ΡΠ°ΡΠΈΠΈ. Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ: ΡΡΠ΅ΠΏΠ΅Π½Ρ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΡΠΈΠ½ΡΠ΅Π·Π° ΠΠΠ ΠΏΡΠΈ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΈ EPA ΠΈΠ»ΠΈ DHA
Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π²ΠΎΠ·ΡΠ°ΡΡΠ°Π»Π° ΠΏΡΠΈ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΊΠ»Π΅ΡΠΎΠΊ ΠΏΡΠΈ 42 Β°C Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ ΡΠ°ΠΊΠΎΠ²ΡΠΌ ΠΏΡΠΈ 37 Β°C. ΠΡΠΈ 37 Β°C ΠΈΠ½Π³ΠΈΠ±ΠΈΡΡΡΡΠ΅Π΅
Π΄Π΅ΠΉΡΡΠ²ΠΈΠ΅ EPA Π±ΡΠ»ΠΎ Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΡΠΌ, ΡΠ΅ΠΌ ΡΠ°ΠΊΠΎΠ²ΠΎΠ΅ DHA Π² Π½ΠΈΠ·ΠΊΠΈΡ
ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΡΡ
(ΠΏΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ 50 ΞΌM β 63,1
ΠΏΡΠΎΡΠΈΠ² 87,9%), Π° DHA β Π±ΠΎΠ»Π΅Π΅ ΡΠΈΠ»ΡΠ½ΡΠΌ ΠΏΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ 150 ΞΌM (16,7 vs 4,4%). ΠΡΡΠ΅ΠΊΡ DHA Π² ΡΡΠ°Π²Π½Π΅Π½ΠΈΠΈ Ρ EPA
Π±ΡΠ» Π±ΠΎΠ»Π΅Π΅ Π²ΡΡΠ°ΠΆΠ΅Π½Π½ΡΠΌ ΠΏΡΠΈ 40 Β°C (29,0 vs 19,2% ΠΏΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ 100 ΞΌM) ΠΈΠ»ΠΈ 42 Β°C (19,7 vs 10,6% ΠΏΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ
100 ΞΌM). ΠΡΠΈ ΠΎΠ±ΡΠ°Π±ΠΎΡΠΊΠ΅ ΠΊΠ»Π΅ΡΠΎΠΊ EPA ΠΈΠ»ΠΈ DHA Ρ ΠΏΠΎΡΠ»Π΅Π΄ΡΡΡΠΈΠΌ ΠΊΡΠ»ΡΡΠΈΠ²ΠΈΡΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ 96 Ρ Π½Π°Π±Π»ΡΠ΄Π°Π»ΠΎΡΡ
ΡΡΠΈΠ»Π΅Π½ΠΈΠ΅ ΠΈΠ½Π³ΠΈΠ±ΠΈΡΡΡΡΠ΅Π³ΠΎ Π²ΠΎΠ·Π΄Π΅ΠΉΡΡΠ²ΠΈΡ EPA Π΄Π°ΠΆΠ΅ ΠΏΡΠΈ ΠΊΠΎΠ½ΡΠ΅Π½ΡΡΠ°ΡΠΈΠΈ 50 ΞΌM ΠΊΠ°ΠΊ ΠΏΡΠΈ 37 Β°C (0,5 vs 11,3%), ΡΠ°ΠΊ ΠΈ ΠΏΡΠΈ
42 Β°C (0,6 vs 4,5%), ΡΡΠΎ Π² ΡΠ°ΠΊΠΈΡ
ΡΡΠ»ΠΎΠ²ΠΈΡΡ
Π±ΡΠ»ΠΎ Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½Π΅Π΅, ΡΠ΅ΠΌ Ρ DHA. Π ΡΠΎ ΠΆΠ΅ Π²ΡΠ΅ΠΌΡ ΡΡΠ΅ΠΏΠ΅Π½Ρ Π²ΠΊΠ»ΡΡΠ΅Π½ΠΈΡ EPA Π²
ΠΊΠ»Π΅ΡΠΊΠΈ EAT ΠΏΡΠΈ 37 Β°C ΠΈΠ»ΠΈ 42 Β°C Π±ΡΠ»Π° Π½ΠΈΠΆΠ΅, ΡΠ΅ΠΌ ΡΠ°ΠΊΠΎΠ²Π°Ρ DHA. ΠΡΠ²ΠΎΠ΄Ρ: Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ DHA ΠΈΠ»ΠΈ EPA in vitro Π·Π½Π°ΡΠΈΡΠ΅Π»ΡΠ½ΠΎ
ΠΈΠ½Π³ΠΈΠ±ΠΈΡΡΠ΅Ρ ΡΠΈΠ½ΡΠ΅Π· ΠΠΠ, ΠΈ ΡΡΠΎΡ ΡΡΡΠ΅ΠΊΡ ΡΡΠΈΠ»ΠΈΠ²Π°Π΅ΡΡΡ Π½Π° ΡΠΎΠ½Π΅ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΊΠΈΡΠ»ΠΎΡ ΠΈ Π³ΠΈΠΏΠ΅ΡΡΠ΅ΡΠΌΠΈΠΈ