18 research outputs found

    The use of desalinated-dried jellyfish and rice bran for controlling weeds and rice yield

    Get PDF
    To achieve higher rice production, rice-growing countries have used great amounts of synthetic chemical compounds (chemical fertilizers and pesticides) that can have adverse effects on the environment and humans. Organic products and organic farming technologies are friendlier to the environment and more conducive to sustainable agriculture but require different inputs, knowledge and skills. Weed control is one of the major challenges in organic rice cultivation. The present study proposes and tests the use of desalinated-dried jellyfish chips in the development of sustainable rice production. Vast amounts of jellyfishes have been found in the Sea of Japan (Nomura's jellyfish, Nemopilema nomurai Kishinouye) and Japan inland sea areas (Water jelly, Aurelia aurita (Linne)), and jellyfish populationc can have a negative impact on the fishery industry. In this context, the use of jellyfish in organic agriculture has attracted attention. The present study found that the application of desalinated-dried jellyfish (small pieces of jellyfish which are desalinated and dried) mixed in soil before transplanting can effectively control weeds in rice fields and has a nutrient effect because of the high nitrogen content (12-13%). Desalinated-dried jellyfish has potential as an agricultural material that replaces herbicides and chemical fertilizers. It also contributes to environment-friendly rice production. It was found that both desalinated-dried jellyfish and rice bran effectively controlled rice weeds when mixed in the soil before the transplanting.The grain yields of desalinated-dried jellyfish treatments were consistently higher than the corresponding rice bran treatments. The rice yield from the desalinated-dried jellyfish treatments were comparable to the chemical fertilizer treatment.

    Promotive effects of hyperthermia on the inhibition of DNA synthesis in Ehrlich ascites tumor cells by eicosapentaenoic and docosahexaenoic acids

    No full text
    Aim: To evaluate inhibitory effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on DNA synthesis in combination with hyperthermia in vitro. Methods: A suspension of Ehrlich ascites tumor cells (EAT) was mixed with DHA or EPA in a glass tube, heated at 37 Β°C, 40 Β°C, or 42 Β°C for 1 h in a water bath, and cultured at 37 Β°C for 19 or 96 h. DNA synthesis was assayed by monitoring of the incorporation of [3H]-thymidine into the acid-insoluble fraction. DHA or EPA incorporated into EAT cells was extracted and measured by thin-layer chromatography and gas-liquid chromatography. Results: The inhibition of DNA synthesis by EPA or DHA increased markedly upon the treatment at 42 Β°C and 40 Β°C compared to that at 37 Β°C. At 37 Β°C, inhibitory action of EPA was more potent than that of DHA at low concentrations (at 50 Β΅M β€” DNA synthesis level: EPA, 63.1%; DHA, 87.9%), whereas inhibitory action of DHA was higher at 150 Β΅M (16.7%, 4.4%, ibid.). The effect of DHA compared to EPA was more marked at 40 Β°C (29.0%, 19.2% at 100 Β΅M) or 42 Β°C (19.7%, 10.6% at 100 Β΅M). Evaluation of DNA synthesis rate in the cells treated for 1 h by EPA or DHA with the next culturing of EAT cells for 19 h resulted in the enhanced inhibitory activity of EPA even at concentrations as low as 50 Β΅M at either 37 Β°C (0.5%, 11.3%) or 42 Β°C (0.6%, 4.5%), which in these conditions was higher than that of DHA. At the same time the rate of incorporation of EPA in EAT cells at 37 Β°C or 42 Β°C was lower than that of DHA. Conclusion: Administration of DHA or EPA in vitro significantly inhibit DNA synthesis, and such effect is enhanced by combination of PUFAs with hyperthermia.ЦСль: ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚ΡŒ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ воздСйствиС эйкозопСнтаСновой кислоты (EPA) ΠΈ докозагСксаСновой кислоты (DHA) Π½Π° синтСз Π”ΠΠš Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ с Π³ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Ρ€ΠΌΠΈΠ΅ΠΉ Π² ΠΌΠΎΠ΄Π΅Π»ΠΈ in vitro. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: ΡΡƒΡΠΏΠ΅Π½Π·ΠΈΡŽ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ асцитной ΠΊΠ°Ρ€Ρ†ΠΈΠ½ΠΎΠΌΡ‹ Π­Ρ€Π»ΠΈΡ…Π° (EAT) смСшивали с DHA ΠΈΠ»ΠΈ EPA Π² стСклянной ΠΏΡ€ΠΎΠ±ΠΈΡ€ΠΊΠ΅, ΠΈΠ½ΠΊΡƒΠ±ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 1 Ρ‡ ΠΏΡ€ΠΈ 37 Β°C, 40 Β°C ΠΈΠ»ΠΈ 42 Β°C Π² водяной Π±Π°Π½Π΅ ΠΈ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π»ΠΈ ΠΏΡ€ΠΈ 37 Β°C 19 ΠΈΠ»ΠΈ 96 Ρ‡. Π‘ΠΈΠ½Ρ‚Π΅Π· Π”ΠΠš ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ ΠΏΠΎ ΡƒΡ€ΠΎΠ²Π½ΡŽ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ [3 H]-Ρ‚ΠΈΠΌΠΈΠ΄ΠΈΠ½Π°. DHA ΠΈΠ»ΠΈ EPA, Π²ΠΊΠ»ΡŽΡ‡ΠΈΠ²ΡˆΠΈΠ΅ΡΡ Π² ΠΊΠ»Π΅Ρ‚ΠΊΠΈ EAT cells, экстрагировали, Π° ΠΈΡ… количСство опрСдСляли ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ тонкослойной ΠΈ газоТидкостной Ρ…Ρ€ΠΎΠΌΠ°Ρ‚ΠΎΠ³Ρ€Π°Ρ„ΠΈΠΈ. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹: ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ ингибирования синтСза Π”ΠΠš ΠΏΡ€ΠΈ дСйствии EPA ΠΈΠ»ΠΈ DHA Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ возрастала ΠΏΡ€ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ ΠΏΡ€ΠΈ 42 Β°C Π² сравнСнии с Ρ‚Π°ΠΊΠΎΠ²Ρ‹ΠΌ ΠΏΡ€ΠΈ 37 Β°C. ΠŸΡ€ΠΈ 37 Β°C ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ дСйствиС EPA Π±Ρ‹Π»ΠΎ Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΌ, Ρ‡Π΅ΠΌ Ρ‚Π°ΠΊΠΎΠ²ΠΎΠ΅ DHA Π² Π½ΠΈΠ·ΠΊΠΈΡ… концСнтрациях (ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 50 ΞΌM β€” 63,1 ΠΏΡ€ΠΎΡ‚ΠΈΠ² 87,9%), Π° DHA β€” Π±ΠΎΠ»Π΅Π΅ ΡΠΈΠ»ΡŒΠ½Ρ‹ΠΌ ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 150 ΞΌM (16,7 vs 4,4%). Π­Ρ„Ρ„Π΅ΠΊΡ‚ DHA Π² сравнСнии с EPA Π±Ρ‹Π» Π±ΠΎΠ»Π΅Π΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½Π½Ρ‹ΠΌ ΠΏΡ€ΠΈ 40 Β°C (29,0 vs 19,2% ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 100 ΞΌM) ΠΈΠ»ΠΈ 42 Β°C (19,7 vs 10,6% ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 100 ΞΌM). ΠŸΡ€ΠΈ ΠΎΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΊΠ»Π΅Ρ‚ΠΎΠΊ EPA ΠΈΠ»ΠΈ DHA с ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΊΡƒΠ»ΡŒΡ‚ΠΈΠ²ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 96 Ρ‡ наблюдалось усилСниС ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ воздСйствия EPA Π΄Π°ΠΆΠ΅ ΠΏΡ€ΠΈ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ 50 ΞΌM ΠΊΠ°ΠΊ ΠΏΡ€ΠΈ 37 Β°C (0,5 vs 11,3%), Ρ‚Π°ΠΊ ΠΈ ΠΏΡ€ΠΈ 42 Β°C (0,6 vs 4,5%), Ρ‡Ρ‚ΠΎ Π² Ρ‚Π°ΠΊΠΈΡ… условиях Π±Ρ‹Π»ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½Π΅Π΅, Ρ‡Π΅ΠΌ Ρƒ DHA. Π’ Ρ‚ΠΎ ΠΆΠ΅ врСмя ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΡ EPA Π² ΠΊΠ»Π΅Ρ‚ΠΊΠΈ EAT ΠΏΡ€ΠΈ 37 Β°C ΠΈΠ»ΠΈ 42 Β°C Π±Ρ‹Π»Π° Π½ΠΈΠΆΠ΅, Ρ‡Π΅ΠΌ таковая DHA. Π’Ρ‹Π²ΠΎΠ΄Ρ‹: Π²Π²Π΅Π΄Π΅Π½ΠΈΠ΅ DHA ΠΈΠ»ΠΈ EPA in vitro Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠ½Π³ΠΈΠ±ΠΈΡ€ΡƒΠ΅Ρ‚ синтСз Π”ΠΠš, ΠΈ этот эффСкт усиливаСтся Π½Π° Ρ„ΠΎΠ½Π΅ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ примСнСния кислот ΠΈ Π³ΠΈΠΏΠ΅Ρ€Ρ‚Π΅Ρ€ΠΌΠΈΠΈ
    corecore