1,303 research outputs found

    Chaotic properties of systems with Markov dynamics

    Full text link
    We present a general approach for computing the dynamic partition function of a continuous-time Markov process. The Ruelle topological pressure is identified with the large deviation function of a physical observable. We construct for the first time a corresponding finite Kolmogorov-Sinai entropy for these processes. Then, as an example, the latter is computed for a symmetric exclusion process. We further present the first exact calculation of the topological pressure for an N-body stochastic interacting system, namely an infinite-range Ising model endowed with spin-flip dynamics. Expressions for the Kolmogorov-Sinai and the topological entropies follow.Comment: 4 pages, to appear in the Physical Review Letter

    Waves and Instabilities in Accretion Disks: MHD Spectroscopic Analysis

    Get PDF
    A complete analytical and numerical treatment of all magnetohydrodynamic waves and instabilities for radially stratified, magnetized accretion disks is presented. The instabilities are a possible source of anomalous transport. While recovering results on known hydrodynamicand both weak- and strong-field magnetohydrodynamic perturbations, the full magnetohydrodynamic spectra for a realistic accretion disk model demonstrates a much richer variety of instabilities accessible to the plasma than previously realized. We show that both weakly and strongly magnetized accretion disks are prone to strong non-axisymmetric instabilities.The ability to characterize all waves arising in accretion disks holds great promise for magnetohydrodynamic spectroscopic analysis.Comment: FOM-Institute for plasma physics "Rijnhuizen", Nieuwegein, the Netherlands 12 pages, 3 figures, Accepted for publication in ApJ

    Three-dimensional lattice-Boltzmann simulations of critical spinodal decomposition in binary immiscible fluids

    Full text link
    We use a modified Shan-Chen, noiseless lattice-BGK model for binary immiscible, incompressible, athermal fluids in three dimensions to simulate the coarsening of domains following a deep quench below the spinodal point from a symmetric and homogeneous mixture into a two-phase configuration. We find the average domain size growing with time as tγt^\gamma, where γ\gamma increases in the range 0.545<γ<0.7170.545 < \gamma < 0.717, consistent with a crossover between diffusive t1/3t^{1/3} and hydrodynamic viscous, t1.0t^{1.0}, behaviour. We find good collapse onto a single scaling function, yet the domain growth exponents differ from others' works' for similar values of the unique characteristic length and time that can be constructed out of the fluid's parameters. This rebuts claims of universality for the dynamical scaling hypothesis. At early times, we also find a crossover from q2q^2 to q4q^4 in the scaled structure function, which disappears when the dynamical scaling reasonably improves at later times. This excludes noise as the cause for a q2q^2 behaviour, as proposed by others. We also observe exponential temporal growth of the structure function during the initial stages of the dynamics and for wavenumbers less than a threshold value.Comment: 45 pages, 18 figures. Accepted for publication in Physical Review

    Probability distribution of the free energy of a directed polymer in a random medium

    Full text link
    We calculate exactly the first cumulants of the free energy of a directed polymer in a random medium for the geometry of a cylinder. By using the fact that the n-th moment of the partition function is given by the ground state energy of a quantum problem of n interacting particles on a ring of length L, we write an integral equation allowing to expand these moments in powers of the strength of the disorder gamma or in powers of n. For n small and n of order (L gamma)^(-1/2), the moments take a scaling form which allows to describe all the fluctuations of order 1/L of the free energy per unit length of the directed polymer. The distribution of these fluctuations is the same as the one found recently in the asymmetric exclusion process, indicating that it is characteristic of all the systems described by the Kardar-Parisi-Zhang equation in 1+1 dimensions.Comment: 18 pages, no figure, tu appear in PRE 61 (2000

    Lattice-Gas Simulations of Minority-Phase Domain Growth in Binary Immiscible and Ternary Amphiphilic Fluid

    Full text link
    We investigate the growth kinetics of binary immiscible fluids and emulsions in two dimensions using a hydrodynamic lattice-gas model. We perform off-critical quenches in the binary fluid case and find that the domain size within the minority phase grows algebraically with time in accordance with theoretical predictions. In the late time regime we find a growth exponent n = 0.45 over a wide range of concentrations, in good agreement with other simluations. In the early time regime we find no universal growth exponent but a strong dependence on the concentration of the minority phase. In the ternary amphiphilic fluid case the kinetics of self assembly of the droplet phase are studied for the first time. At low surfactant concentrations, we find that, after an early algebraic growth, a nucleation regime dominates the late-time kinetics, which is enhanced by an increasing concentration of surfactant. With a further increase in the concentration of surfactant, we see a crossover to logarithmically slow growth, and finally saturation of the oil droplets, which we fit phenomenologically to a stretched exponential function. Finally, the transition between the droplet and the sponge phase is studied.Comment: 22 pages, 13 figures, submitted to PR

    Chaotic Properties of Dilute Two and Three Dimensional Random Lorentz Gases I: Equilibrium Systems

    Full text link
    We compute the Lyapunov spectrum and the Kolmogorov-Sinai entropy for a moving particle placed in a dilute, random array of hard disk or hard sphere scatterers - i.e. the dilute Lorentz gas model. This is carried out in two ways: First we use simple kinetic theory arguments to compute the Lyapunov spectrum for both two and three dimensional systems. In order to provide a method that can easily be generalized to non-uniform systems we then use a method based upon extensions of the Lorentz-Boltzmann (LB) equation to include variables that characterize the chaotic behavior of the system. The extended LB equations depend upon the number of dimensions and on whether one is computing positive or negative Lyapunov exponents. In the latter case the extended LB equation is closely related to an "anti-Lorentz-Boltzmann equation" where the collision operator has the opposite sign from the ordinary LB equation. Finally we compare our results with computer simulations of Dellago and Posch and find very good agreement.Comment: 48 pages, 3 ps fig

    Simulating Three-Dimensional Hydrodynamics on a Cellular-Automata Machine

    Full text link
    We demonstrate how three-dimensional fluid flow simulations can be carried out on the Cellular Automata Machine 8 (CAM-8), a special-purpose computer for cellular-automata computations. The principal algorithmic innovation is the use of a lattice-gas model with a 16-bit collision operator that is specially adapted to the machine architecture. It is shown how the collision rules can be optimized to obtain a low viscosity of the fluid. Predictions of the viscosity based on a Boltzmann approximation agree well with measurements of the viscosity made on CAM-8. Several test simulations of flows in simple geometries -- channels, pipes, and a cubic array of spheres -- are carried out. Measurements of average flux in these geometries compare well with theoretical predictions.Comment: 19 pages, REVTeX and epsf macros require

    Persistence exponents in a 3D symmetric binary fluid mixture

    Full text link
    The persistence exponent, theta, is defined by N_F sim t^theta, where t is the time since the start of the coarsening process and the "no-flip fraction", N_F, is the number of points that have not seen a change of "color" since t=0. Here we investigate numerically the persistence exponent for a binary fluid system where the coarsening is dominated by hydrodynamic transport. We find that N_F follows a power law decay (as opposed to exponential) with the value of theta somewhat dependent on the domain growth rate (L sim t^alpha, where L is the average domain size), in the range theta=1.23 +-0.1 (alpha = 2/3) to theta=1.37 +-0.2 (alpha=1). These alpha values correspond to the inertial and viscous hydrodynamic regimes respectively.Comment: 9 pages RevTex, 9 figures included as eps files on last 3 pages, submitted to Phys Rev
    corecore