657 research outputs found

    Efficacy of Kinesiotaping in Lower Trunk Flexion range of motion in Tennis Players

    Get PDF
    INTRODUCTION: Overuse or repetitive microtrauma to muscles, joints, ligaments and bones are common injuries seen in athletics. In athletes, low back strength is an important component of participating in many sports, including racquets sports, judo, weight lifting, baseball, martial arts and rock climbing. In Electromyographic (EMG) studies, performed on collegiate and professional tennis players, it was discovered that the back extensors, lumbar erector spinae, multifidus and DL facia showed marked activity during portions of the serves, forehand and backhand strokes.10,18 Therefore, a marked increase in activation of the lumbar muscles may lead to overuse injury resulting in reduced muscle strength or fatigue of low back muscles which may result in the muscle not being able to maintain force output and may also be a contributing factor in decreasing the range of motion of lumbar spine. This would result in decreasing the overall effectiveness of on athleteā€™s sports ability. NEED & SIGNIFICANCE OF THE STUDY: 1. Literature suggests that itā€™s not possible to gain effective performance without appropriate flexibility. So, if kinesiotaping proves to be an effective measure to increase flexibility of lower trunk then performance of tennis player can be enhanced using this measure. 2. This method if justified then it will also help the player by not only enhancing theflexibility but also support and protection in biomechanically using the extreme ranges of the body. METHODOLOGY: The purpose of the study is to find out the efficacy of kinesiotaping on lower trunk flexion range of motion in tennis player. Hypotheses: Experimental Hypothesis: There is significant effect of kinesiotaping on lower trunk flexion ROM in tennis player. Null Hypothesis: There is no significant effect of kinesiotaping on lower trunk flexion ROM in tennis player. Sample: a. Number of subjects- 30 b. Source of the subjects : Study was conducted in Life Spring, Tennis Academy, Coimbatore, Tamil Nadu. c. Method of Selection- Sample of Convenience. Study Design: Pre-test post-test single group experimental design. Study Setup And Duration: Total duration of the study 6 weeks. Each subject needs 2 days (Day 1 and 2). Each session of 1 hour for a day. Inclusion Criteria: a. Age group 18-24 years. b. Only male players were taken. Exclusion Criteria: a. Players having any low back injury with in 6 month. b. Players having any pathology of hip, knee, thigh, and back. c. Other factor affecting the flexibility was not calculated. Like temperature etc. CONCLUSION: Our research indicates that kinesiotaping when applied to tennis players, it enhance low back muscular flexibility (ROM) than that seen in a ā€œno tapeā€ condition. Also when KT using a Y flexion pattern was applied, it improve the active range of motion in lower trunk flexion. Although, future research must be done to test if Kinesiotaping has a therapeutic benefit for athletes with chronic back pain. Hence, null hypothesis that there is no significant effect of kinesiotaping on lower trunk flexion ROM in tennis player rejected and experimental hypothesis is accepted. However, since this study was of sample size, further studies can be done with large sample size which would support this conclusion more strongly. Despite limitation, this study provides evidence for the positive effect of K Tape in improving flexibility in Tennis players

    Idiopathic Fascicular Ventricular Tachycardia

    Get PDF
    Idiopathic fascicular ventricular tachycardia is an important cardiac arrhythmia with specific electrocardiographic features and therapeutic options. It is characterized by relatively narrow QRS complex and right bundle branch block pattern. The QRS axis depends on which fascicle is involved in the re-entry. Left axis deviation is noted with left posterior fascicular tachycardia and right axis deviation with left anterior fascicular tachycardia. A left septal fascicular tachycardia with normal axis has also been described. Fascicular tachycardia is usually seen in individuals without structural heart disease. Response to verapamil is an important feature of fascicular tachycardia. Rare instances of termination with intravenous adenosine have also been noted. A presystolic or diastolic potential preceding the QRS, presumed to originate from the Purkinje fibers can be recorded during sinus rhythm and ventricular tachycardia in many patients with fascicular tachycardia. This potential (P potential) has been used as a guide to catheter ablation. Prompt recognition of fascicular tachycardia especially in the emergency department is very important. It is one of the eminently ablatable ventricular tachycardias. Primary ablation has been reported to have a higher success, lesser procedure time and fluoroscopy time

    Predicting the dissolution kinetics of silicate glasses using machine learning

    Full text link
    Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties

    Predicting Young's Modulus of Glasses with Sparse Datasets using Machine Learning

    Full text link
    Machine learning (ML) methods are becoming popular tools for the prediction and design of novel materials. In particular, neural network (NN) is a promising ML method, which can be used to identify hidden trends in the data. However, these methods rely on large datasets and often exhibit overfitting when used with sparse dataset. Further, assessing the uncertainty in predictions for a new dataset or an extrapolation of the present dataset is challenging. Herein, using Gaussian process regression (GPR), we predict Young's modulus for silicate glasses having sparse dataset. We show that GPR significantly outperforms NN for sparse dataset, while ensuring no overfitting. Further, thanks to the nonparametric nature, GPR provides quantitative bounds for the reliability of predictions while extrapolating. Overall, GPR presents an advanced ML methodology for accelerating the development of novel functional materials such as glasses.Comment: 17 pages, 5 figure

    MaScQA: A Question Answering Dataset for Investigating Materials Science Knowledge of Large Language Models

    Full text link
    Information extraction and textual comprehension from materials literature are vital for developing an exhaustive knowledge base that enables accelerated materials discovery. Language models have demonstrated their capability to answer domain-specific questions and retrieve information from knowledge bases. However, there are no benchmark datasets in the materials domain that can evaluate the understanding of the key concepts by these language models. In this work, we curate a dataset of 650 challenging questions from the materials domain that require the knowledge and skills of a materials student who has cleared their undergraduate degree. We classify these questions based on their structure and the materials science domain-based subcategories. Further, we evaluate the performance of GPT-3.5 and GPT-4 models on solving these questions via zero-shot and chain of thought prompting. It is observed that GPT-4 gives the best performance (~62% accuracy) as compared to GPT-3.5. Interestingly, in contrast to the general observation, no significant improvement in accuracy is observed with the chain of thought prompting. To evaluate the limitations, we performed an error analysis, which revealed conceptual errors (~64%) as the major contributor compared to computational errors (~36%) towards the reduced performance of LLMs. We hope that the dataset and analysis performed in this work will promote further research in developing better materials science domain-specific LLMs and strategies for information extraction

    Predicting Oxide Glass Properties with Low Complexity Neural Network and Physical and Chemical Descriptors

    Full text link
    Due to their disordered structure, glasses present a unique challenge in predicting the composition-property relationships. Recently, several attempts have been made to predict the glass properties using machine learning techniques. However, these techniques have the limitations, namely, (i) predictions are limited to the components that are present in the original dataset, and (ii) predictions towards the extreme values of the properties, important regions for new materials discovery, are not very reliable due to the sparse datapoints in this region. To address these challenges, here we present a low complexity neural network (LCNN) that provides improved performance in predicting the properties of oxide glasses. In addition, we combine the LCNN with physical and chemical descriptors that allow the development of universal models that can provide predictions for components beyond the training set. By training on a large dataset (~50000) of glass components, we show the LCNN outperforms state-of-the-art algorithms such as XGBoost. In addition, we interpret the LCNN models using Shapely additive explanations to gain insights into the role played by the descriptors in governing the property. Finally, we demonstrate the universality of the LCNN models by predicting the properties for glasses with new components that were not present in the original training set. Altogether, the present approach provides a promising direction towards accelerated discovery of novel glass compositions.Comment: 15 pages, 3 figure

    Study of the Influence of Alkyl Chain Cation-Solvent Interactions on Water Structure in 1,3-Butanediol-Water Mixture by Apparent Molar Volume Data

    Get PDF
    The densities of 1,3-butanediol-water mixtures and some tetraalkylammonium iodide salt solutions in these solvent mixtures at different concentrations (0.02 M-0.14 M) have been determined at 298.15 K using magnetic float densitometer technique. Then apparent molar volumes Ī¦V of the electrolytes in above solvent mixtures were calculated. The apparent molar volumes of transfer āˆ†Ī¦VĀ° (tr) were also calculated and the ion-ion / ion- solvent interactions are then discussed on the basis of changes in the Masson's slope and apparent molar volumes of transfer data
    • ā€¦
    corecore