858 research outputs found
A new atmospheric aerosol phase equilibrium model (UHAERO): organic systems
In atmospheric aerosols, water and volatile inorganic and organic species are distributed between the gas and aerosol phases in accordance with thermodynamic equilibrium. Within an atmospheric particle, liquid and solid phases can exist at equilibrium. Models exist for computation of phase equilibria for inorganic/water mixtures typical of atmospheric aerosols; when organic species are present, the phase equilibrium problem is complicated by organic/water interactions as well as the potentially large number of organic species. We present here an extension of the UHAERO inorganic thermodynamic model (Amundson et al., 2006c) to organic/water systems. Phase diagrams for a number of model organic/water systems characteristic of both primary and secondary organic aerosols are computed. Also calculated are inorganic/organic/water phase diagrams that show the effect of organics on inorganic deliquescence behavior. The effect of the choice of activity coefficient model for organics on the computed phase equilibria is explored
A computationally efficient inorganic atmospheric aerosol phase equilibrium model (UHAERO)
A variety of thermodynamic models have been developed to predict inorganic gas-aerosol equilibrium. To achieve computational efficiency a number of the models rely on a priori specification of the phases present in certain relative humidity regimes. Presented here is a new computational model, named UHAERO, that is both efficient and rigorously computes phase behavior without any a priori specification. The computational implementation is based on minimization of the Gibbs free energy using a primal-dual method, coupled to a Newton iteration. The mathematical details of the solution are given elsewhere. The model also computes deliquescence and crystallization behavior without any a priori specification of the relative humidities of deliquescence or crystallization. Detailed phase diagrams of the sulfate/nitrate/ammonium/water system are presented as a function of relative humidity at 298.15 K over the complete space of composition
A new inorganic atmospheric aerosol phase equilibrium model (UHAERO)
A variety of thermodynamic models have been developed to predict inorganic gas-aerosol equilibrium. To achieve computational efficiency a number of the models rely on a priori specification of the phases present in certain relative humidity regimes. Presented here is a new computational model, named UHAERO, that is both efficient and rigorously computes phase behavior without any a priori specification. The computational implementation is based on minimization of the Gibbs free energy using a primal-dual method, coupled to a Newton iteration. The mathematical details of the solution are given elsewhere. The model computes deliquescence behavior without any a priori specification of the relative humidities of deliquescence. Also included in the model is a formulation based on classical theory of nucleation kinetics that predicts crystallization behavior. Detailed phase diagrams of the sulfate/nitrate/ammonium/water system are presented as a function of relative humidity at 298.15 K over the complete space of composition
A phase equilibrium model for atmospheric aerosols containing inorganic electrolytes and organic compounds (UHAERO), with application to dicarboxylic acids
Computation of phase and chemical equilibria of water-organic-inorganic mixtures is of significant interest in atmospheric aerosol modeling. A new version of the phase partitioning model, named UHAERO, is presented here, which allows one to compute the phase behavior for atmospheric aerosols containing inorganic electrolytes and organic compounds. The computational implementation of the model is based on standard minimization of the Gibbs free energy using a primal-dual method, coupled to a Newton iteration. Water uptake and deliquescence properties of mixtures of aqueous solutions of salts and dicarboxylic acids, including oxalic, malonic, succinic, glutaric, maleic, malic, or methyl succinic acids, are based on a hybrid thermodynamic approach for the modeling of activity coefficients (Clegg and Seinfeld, 2006a, 2006b). UHAERO currently considers ammonium salts and the neutralization of dicarboxylic acids and sulfuric acid. Phase diagrams for sulfate/ammonium/water/dicarboxylic acid systems are presented as a function of relative humidity at 298.15 K over the complete space of compositions
Radiative Leptonic Decays of Heavy Mesons
We compute the photon spectrum and the rate for the decays These photonic modes constitute a potentially large background
for the purely leptonic decays which are used to extract the heavy meson decay
constants. While the rate for D\to l\n\g is small, the radiative decay in the
meson case could be of comparable magnitude or even larger than B\to\m\n.
This would affect the determination of if the channel cannot be
identified. We obtain theoretical estimates for the photonic rates and disscuss
their possible experimental implications.Comment: 12 pages, RevTex, 3 uuencoded figures include
Radiative Neutralino Decay in Supersymmetric Models
The radiative decay Z2-> Z1 gamma proceeds at the one-loop level in the MSSM.
It can be the dominant decay mode for the second lightest neutralino Z2 in
certain regions of parameter space of supersymmetric models, where either a
dynamical and/or kinematic enhancement of the branching fraction occurs. We
perform an updated numerical study of this decay mode in both the minimal
supergravity model (mSUGRA) and in the more general MSSM framework. In mSUGRA,
the largest rates are found in the ``focus point'' region, where the mu
parameter becomes small, and the lightest neutralinos become higgsino-like; in
this case, radiative branching fraction can reach the 1% level. Our MSSM
analysis includes a scan over independent positive and negative gaugino masses.
We show branching fractions can reach the 10-100% level even for large values
of the parameter tan(beta). These regions of parameter space are realized in
supergravity models with non-universal gaugino masses. Measurement of the
radiative neutralino branching fraction may help pin down underlying parameters
of the fundamental supersymmetric model.Comment: 19 page JHEP file with 8 PS figures; previous version contained
figure misplacemen
Dynamic jamming of iceberg-choked fjords
We investigate the dynamics of ice mélange by analyzing rapid motion recorded by a time-lapse camera and terrestrial radar during several calving events that occurred at Jakobshavn Isbræ, Greenland. During calving events (1) the kinetic energy of the ice mélange is 2 orders of magnitude smaller than the total energy released during the events, (2) a jamming front propagates through the ice mélange at a rate that is an order of magnitude faster than the motion of individual icebergs, (3) the ice mélange undergoes initial compaction followed by slow relaxation and extension, and (4) motion of the ice mélange gradually decays before coming to an abrupt halt. These observations indicate that the ice mélange experiences widespread jamming during calving events and is always close to being in a jammed state during periods of terminus quiescence. We therefore suspect that local jamming influences longer timescale ice mélange dynamics and stress transmission
Single Neutralino production at CERN LHC
The common belief that the lightest supersymmetric particle (LSP) might be a
neutralino, providing also the main Dark Matter (DM) component, calls for
maximal detail in the study of the neutralino properties. Motivated by this, we
consider the direct production of a single neutralino \tchi^0_i at a
high/energy hadron collider, focusing on the \tchi^0_1 and \tchi^0_2 cases.
At Born level, the relevant subprocesses are q\bar q\to \tchi^0_i \tilde g,
g q\to \tchi^0_i \tilde q_{L,R} and q\bar q'\to \tchi^0_i\tchi^\pm_j; while
at 1-loop, apart from radiative corrections to these processes, we consider
also gg\to \tchi^0_i\tilde{g}, for which a numerical code named PLATONgluino
is released. The relative importance of these channels turns out to be
extremely model dependent. Combining these results with an analogous study of
the direct \tchi^0_i\tchi^0_j pair production, should help in testing the
SUSY models and the Dark Matter assignment.Comment: 22 pages and 12 figures; version to appear in Phys.Rev.
Strong and Electromagnetic Decays of Two New Baryons
Two recently discovered excited charm baryons are studied within the
framework of Heavy Hadron Chiral Perturbation Theory. We interpret these new
baryons which lie 308 \MeV and 340 \MeV above the as
members of a P-wave spin doublet. Differential and total decay rates for their
double pion transitions down to the ground state are calculated.
Estimates for their radiative decay rates are also discussed. We find that the
experimentally determined characteristics of the baryons may be
simply understood in the effective theory.Comment: 16 pages with 4 figures not included but available upon request,
CALT-68-191
Decay constants of P and D-wave heavy-light mesons
We investigate decay constants of P and D-wave heavy-light mesons within the
mock-meson approach. Numerical estimates are obtained using the relativistic
quark model. We also comment on recent calculations of heavy-light
pseudo-scalar and vector decay constants.Comment: REVTeX, 22 pages, uses epsf macro, 8 postscript figures include
- …
