10 research outputs found

    Novel Biomarkers Distinguishing Active Tuberculosis from Latent Infection Identified by Gene Expression Profile of Peripheral Blood Mononuclear Cells

    Get PDF
    BACKGROUND: Humans infected with Mycobacterium tuberculosis (MTB) can delete the pathogen or otherwise become latent infection or active disease. However, the factors influencing the pathogen clearance and disease progression from latent infection are poorly understood. This study attempted to use a genome-wide transcriptome approach to identify immune factors associated with MTB infection and novel biomarkers that can distinguish active disease from latent infection. METHODOLOGY/PRINCIPAL FINDINGS: Using microarray analysis, we comprehensively determined the transcriptional difference in purified protein derivative (PPD) stimulated peripheral blood mononuclear cells (PBMCs) in 12 individuals divided into three groups: TB patients (TB), latent TB infection individuals (LTBI) and healthy controls (HC) (n = 4 per group). A transcriptional profiling of 506 differentially expressed genes could correctly group study individuals into three clusters. Moreover, 55- and 229-transcript signatures for tuberculosis infection (TB&LTBI) and active disease (TB) were identified, respectively. The validation study by quantitative real-time PCR (qPCR) performed in 83 individuals confirmed the expression patterns of 81% of the microarray identified genes. Decision tree analysis indicated that three genes of CXCL10, ATP10A and TLR6 could differentiate TB from LTBI subjects. Additional validation was performed to assess the diagnostic ability of the three biomarkers within 36 subjects, which yielded a sensitivity of 71% and specificity of 89%. CONCLUSIONS/SIGNIFICANCE: The transcription profiles of PBMCs induced by PPD identified distinctive gene expression patterns associated with different infectious status and provided new insights into human immune responses to MTB. Furthermore, this study indicated that a combination of CXCL10, ATP10A and TLR6 could be used as novel biomarkers for the discrimination of TB from LTBI

    Identifying predictors of interferon-γ release assay results in pediatric latent tuberculosis: A protective role of bacillus Calmette-Guérin? A pTB-NET collaborative study

    No full text
    Rationale: Interferon-γ (IFN-γ) release assays are widely used to diagnose latent infection with Mycobacterium tuberculosis in adults, but their performance in children remains incompletely evaluated to date. Objectives: To investigate factors influencing results of IFN-γ release assays in children using a large European data set. Methods: The Pediatric Tuberculosis Network European Trials group pooled and analyzed data from five sites across Europe comprising 1,128 children who were all investigated for latent tuberculosis infection by tuberculin skin test and at least one IFN-γ release assay. Multivariate analyses examined age, bacillus Calmette-Guérin (BCG) vaccination status, and sex as predictor variables of results. Subgroup analyses included children who were household contacts. Measurements and Main Results: A total of 1,093 children had a QuantiFERON-TB Gold In-Tube assay and 382 had a T-SPOT.TB IFN-γ release assay. Age was positively correlated with a positive blood result (QuantiFERON-TB Gold In-Tube: odds ratio [OR], 1.08 per year increasing age [P < 0.0001]; T-SPOT.TB: OR, 1.14 per year increasing age [P < 0.001]). A positive QuantiFERON-TB Gold In-Tube result was shown by 5.5% of children with a tuberculin skin test result less than 5mm, by 14.8% if less than 10 mm, and by 20.2% if less than 15 mm. Prior BCG vaccination was associated with a negative IFN-γ release assay result (QuantiFERON-TB Gold In-Tube: OR, 0.41 [P < 0.001]; T-SPOT.TB: OR, 0.41 [P < 0.001]). Young age was a predictor of indeterminate IFN-γ release assay results, but indeterminate rates were low (3.6% in children < 5 yr, 1% in children > 5 yr). Conclusions: Our data show that BCG vaccination may be effective in protecting children against Mycobacterium tuberculosis infection. To restrict use of IFN-γ release assays to children with positive skin tests risks underestimating latent infection. Copyright © 2012 by the American Thoracic Society
    corecore