17 research outputs found

    Density-based unstructured simulations of gas-turbine combustor flows

    Get PDF
    The goal of the present work was to identify and implement modifications to a density-based unstructured RANS CFD algorithm, as typically used in turbomachinery flows (represented here via the RoIIs-Royce 'Hydra' code), for application to Iow Mach number gas-turbine combustor flows. The basic algorithm was modified to make it suitable for combustor relevant problems. Fixed velocity and centreline boundary conditions were added using a characteristic based method. Conserved scalar mean and variance transport equations were introduced to predict scalar mixing in reacting flows. Finally, a flarnelet thermochemistry model for turbulent non-premixed combustion with an assumed shape pdf for turbulence-chemistry interaction was incorporated. A method was identified whereby the temperature/ density provided by the combustion model was coupled directly back into the momentum equations rather than from the energy equation. Three different test cases were used to validate the numerical capabilities of the modified code, for isothermal and reacting flows on different grid types. The first case was the jet in confined cross flow associated with combustor liner-dilution jetcore flow interaction. The second was the swirling flow through a multi-stream swirler. These cases represent the main aerodynamic features of combustor primary zones. The third case was a methane-fueled coaxial jet combustor to assess the combustion model implementation. This study revealed that, via appropriate modifications, an unstructured density-based approach can be utilised to simulate combustor flows. It also demonstrated that unstructured meshes employing nonhexahedral elements were inefficient at accurate capture of flow processes in regions combining rapid mixing and strong convection at angles to cell edges. The final version of the algorithm demonstrated that low Mach RANS reacting flow simulations, commonly performed using a pressure-based approach, can successfully be reproduced using a density-based approach.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    G protein-coupled estrogen receptor 1 regulates renal endothelin-1 signaling system in a sex-specific manner

    Get PDF
    Demographic studies reveal lower prevalence of hypertension among premenopausal females compared to age-matched males. The kidney plays a central role in the maintenance of sodium (Na+) homeostasis and consequently blood pressure. Renal endothelin-1 (ET-1) is a pro-natriuretic peptide that contributes to sex differences in blood pressure regulation and Na+ homeostasis. We recently showed that activation of renal medullary G protein-coupled estrogen receptor 1 (GPER1) promotes ET-1-dependent natriuresis in female, but not male, rats. We hypothesized that GPER1 upregulates the renal ET-1 signaling system in females, but not males. To test our hypothesis, we determined the effect of GPER1 deletion on ET-1 and its downstream effectors in the renal cortex, outer and inner medulla obtained from 12–16-week-old female and male mice. GPER1 knockout (KO) mice and wildtype (WT) littermates were implanted with telemetry transmitters for blood pressure assessment, and we used metabolic cages to determine urinary Na+ excretion. GPER1 deletion did not significantly affect 24-h mean arterial pressure (MAP) nor urinary Na+ excretion. However, GPER1 deletion decreased urinary ET-1 excretion in females but not males. Of note, female WT mice had greater urinary ET-1 excretion than male WT littermates, whereas no sex differences were observed in GPER1 KO mice. GPER1 deletion increased inner medullary ET-1 peptide content in both sexes but increased outer medullary ET-1 content in females only. Cortical ET-1 content increased in response to GPER1 deletion in both sexes. Furthermore, GPER1 deletion notably increased inner medullary ET receptor A (ETA) and decreased outer medullary ET receptor B (ETB) mRNA expression in male, but not female, mice. We conclude that GPER1 is required for greater ET-1 excretion in females. Our data suggest that GPER1 is an upstream regulator of renal medullary ET-1 production and ET receptor expression in a sex-specific manner. Overall, our study identifies the role of GPER1 as a sex-specific upstream regulator of the renal ET-1 system

    Endothelin mediates sex-differences in acclimation to high salt diet in rats

    No full text
    Abstract Introduction Current understanding of sodium (Na+) handling is based on studies done primarily in males. Contrary to the gradual increase in high salt (HS) induced natriuresis over 3–5 days in males, female Sprague Dawley (SD) rats have a robust natriuresis after 1 day of HS. Renal endothelin-1 (ET-1) signaling, through ET receptor A and B, is an important natriuretic pathway and was implicated in our previous dietary salt acclimation studies, however, the contribution of ET receptors to sex-differences in acclimation to dietary Na+ challenges has yet to be clarified. We hypothesized that ET receptors mediate the augmented natriuretic capacity of female rats in response to a HS diet. Methods To test our hypothesis, male and female SD rats were implanted with telemeters and randomly assigned to treatment with A-182086, a dual ETA and ETB receptor antagonist, or control. 24-h urine samples were collected and assessed for electrolytes and ET-1. Studies were performed on a normal salt (NS, 0.3% NaCl) diet and after challenging rats with HS (4% NaCl) diet for 1 day. Results We found that A-182086 increased blood pressure in male and female SD rats fed either diet. Importantly, A-182086 eliminated sex-differences in natriuresis on NS and HS. In particular, A-182086 promotes HS-induced natriuresis in male rats rather than attenuating the natriuretic capacity of females. Further, the sex-difference in urinary ET-1 excretion in NS-fed rats was eliminated by A-182086. Conclusion In conclusion, ET receptors are crucial for mediating sex-difference in the natriuretic capacity primarily through their actions in male rats

    Evaluation of Monoexponential, Stretched-Exponential and Intravoxel Incoherent Motion MRI Diffusion Models in Early Response Monitoring to Neoadjuvant Chemotherapy in Patients With Breast Cancer—A Preliminary Study

    No full text
    Background There has been a growing interest in exploring the applications of stretched-exponential (SEM) and intravoxel incoherent motion (IVIM) models of diffusion-weighted imaging (DWI) in breast imaging, with the focus on differentiation of breast lesions. However, the use of SEM and IVIM models to predict early response to neoadjuvant chemotherapy (NACT) has received less attention. Purpose To investigate the value of monoexponential, SEM, and IVIM models to predict early response to NACT in patients with primary breast cancer. Study Type Prospective. Population Thirty-seven patients with primary breast cancer (aged 46 ± 11 years) due to undergo NACT. Field Strength/Sequences A 1.5-T MR scanner, T1-weighted three-dimensional spoiled gradient-echo, two-dimensional single-shot spin-echo echo-planar imaging sequence (DWI) at six b-values (0–800 s mm−2). Assessment Tumor volume, apparent diffusion coefficient, tissue diffusion (Dt), pseudo-diffusion coefficient (Dp), perfusion fraction (f), distributed diffusion coefficient, and alpha (α) were extracted, following volumetric sampling of the tumors, at three time-points: pretreatment, post one and three cycles of NACT. Statistical Tests Mann–Whitney test, receiver operating characteristic (ROC) curve. Statistical significance level was P < 0.05. Results Following NACT, 17 patients were determined to be pathological responders and 20 nonresponders. Tumor volume was significantly larger in nonresponders at each MRI time-point and demonstrated reasonable performance in predicting response (area under the ROC curve [AUC] = 0.83–0.87). No significant differences between groups were found in the diffusion coefficients at each time-point (P = 0.09–1). The parameters α (SEM), f, and f × Dp (IVIM) were able to differentiate between response groups after one cycle of NACT (AUC = 0.73, 0.72, and 0.74, respectively). Conclusion Diffusion coefficients derived from the monoexponential, SEM, and IVIM models did not predict pathological response. However, the IVIM-derived parameters f and f × Dp and the SEM-derived parameter α were able to predict response to NACT in breast cancer patients following one cycle of NACT. Level of Evidence 2 Technical Efficacy Stage

    An integrated approach for water minimisation in a PVC manufacturing process

    Get PDF
    This paper presents a water minimisation study carried out for a polyvinyl chloride (PVC) resins manufacturing plant. Due to the complexity of the mixed batch and continuous polymerisation process, an integrated process integration approach, which consists of process synthesis, analysis and optimisation was used for this work. A simulation model was first developed in a batch process simulation software, SuperPro Designer V6.0, based on the operating condition of a PVC manufacturing process. The batch simulation model captured the essential information needed for a water minimisation study, e.g. process duration, water mass flow, etc. Data extracted from the simulation model was later used in the water minimisation study, utilising the widely established process synthesis technique of water pinch analysis. Two water saving scenarios were presented. Scenario 1 reports a fresh water and wastewater reduction of 28.5 and 90.1% respectively, for the maximum water recovery scheme without water storage system. In Scenario 2, higher fresh water and wastewater reduction are reported at 31.7 and 100% respectively, when water storage tank is installed in the water network

    Setting the minimum utility gas flowrate targets using cascade analysis technique

    No full text
    This work describes the gas cascade analysis (GCA) as an extension to cascade analysis technique for targeting the minimum flowrates for water and property-based networks. The GCA technique enables quick and accurate identification of the minimum flowrate targets, pinch-point location(s), and resource allocation targets for a utility gas network. Multiple-pinch problems and appropriate selection of gas purification techniques were systematically assessed via the GCA. The GCA technique was successfully used to determine the minimum flowrate targets for nitrogen, oxygen, and hydrogen utility gas networks prior to detailed design
    corecore