14 research outputs found

    MidA is a putative methyltransferase that is required for mitochondrial complex I function

    Get PDF
    10 páginas, 6 figuras.-- et al.Dictyostelium and human MidA are homologous proteins that belong to a family of proteins of unknown function called DUF185. Using yeast two-hybrid screening and pull-down experiments, we showed that both proteins interact with the mitochondrial complex I subunit NDUFS2. Consistent with this, Dictyostelium cells lacking MidA showed a specific defect in complex I activity, and knockdown of human MidA in HEK293T cells resulted in reduced levels of assembled complex I. These results indicate a role for MidA in complex I assembly or stability. A structural bioinformatics analysis suggested the presence of a methyltransferase domain; this was further supported by site-directed mutagenesis of specific residues from the putative catalytic site. Interestingly, this complex I deficiency in a Dictyostelium midA- mutant causes a complex phenotypic outcome, which includes phototaxis and thermotaxis defects. We found that these aspects of the phenotype are mediated by a chronic activation of AMPK, revealing a possible role of AMPK signaling in complex I cytopathology.This work was supported by grants BMC2006-00394 and BMC2009-09050 to R.E. from the Spanish Ministerio de Ciencia e Innovación; to P.R.F. from the Thyne Reid Memorial Trusts and the Australian Research Council; to A.V. and O.G. from the Spanish National Bioinformatics Institute (www.inab.org), a platform of Genome Spain; to R.G. from the Fondo de Investigaciones Sanitarias, Instituto de Salud Carlos III, Spain (PI070167) and from the Comunidad de Madrid (GEN-0269/2006). S.C. is supported by a research contract from Consejería de Educación de la Comunidad de Madrid y del Fondo Social Europeo (FSE).Peer Reviewe

    Tundish Metallurgy: Towards Increased Productivity and Clean Steel

    No full text
    corecore