13,840 research outputs found

    Mathematics Intelligent Tutoring System

    Get PDF
    In these days, there is an increasing technological development in intelligent tutoring systems. This field has become interesting to many researchers. In this paper, we present an intelligent tutoring system for teaching mathematics that help students understand the basics of math and that helps a lot of students of all ages to understand the topic because it's important for students of adding and subtracting. Through which the student will be able to study the course and solve related problems. An evaluation of the intelligent tutoring systems was carried out and the results were encouraging

    Teaching the Right Letter Pronunciation in Reciting the Holy Quran Using Intelligent Tutoring System

    Get PDF
    An Intelligent Tutoring System (ITS) is a computer system that offers an instant, adapted instruction and customized feedback to students without human teacher interference. Reciting "Tajweed" the Holy Quran in the appropriate way is very important for all Muslims and is obligatory in Islamic devotions such as prayers. In this paper, the researchers introduce an intelligent tutoring system for teaching Reciting "Tajweed". Our "Tajweed" tutoring system is limited to "Tafkhim and Tarqiq in TAJWEED" the Holy Quran, Rewaya: Hafs from ‘Aasem. The system was evaluated by reciting teachers and students, and the results were auspicious

    Hypoxic Culture Conditions as a Solution for Mesenchymal Stem Cell Based Regenerative Therapy

    Get PDF
    Cell-based regenerative therapies, based on in vitro propagation of stem cells, offer tremendous hope to many individuals suffering from degenerative diseases that were previously deemed untreatable. Due to the self-renewal capacity, multilineage potential, and immunosuppressive property, mesenchymal stem cells (MSCs) are considered as an attractive source of stem cells for regenerative therapies. However, poor growth kinetics, early senescence, and genetic instability during in vitro expansion and poor engraftment after transplantation are considered to be among the major disadvantages of MSC-based regenerative therapies. A number of complex inter-and intracellular interactive signaling systems control growth, multiplication, and differentiation of MSCs in their niche. Common laboratory conditions for stem cell culture involve ambient O-2 concentration (20%) in contrast to their niche where they usually reside in 2-9% O-2. Notably, O-2 plays an important role in maintaining stem cell fate in terms of proliferation and differentiation, by regulating hypoxia-inducible factor-1 (HIF-1) mediated expression of different genes. This paper aims to describe and compare the role of normoxia (20% O-2) and hypoxia (2-9% O-2) on the biology of MSCs. Finally it is concluded that a hypoxic environment can greatly improve growth kinetics, genetic stability, and expression of chemokine receptors during in vitro expansion and eventually can increase efficiency of MSC-based regenerative therapies.Article Link: http://www.hindawi.com/journals/tswj/2013/632972

    The Application of Fuzzy Logic Controller to Compute a Trust Level for Mobile Agents in a Smart Home

    Get PDF
    Agents that travel through many hosts may cause a threat on the security of the visited hosts. Assets, system resources, and the reputation of the host are few possible targets for such an attack. The possibility for multi-hop agents to be malicious is higher compared to the one-hop or two-hop boomerang agents. The travel history is one of the factors that may allow a server to evaluate the trustworthiness of an agent. This paper proposes a technique to define levels of trust for multi-hop agents that are roaming in a smart home environment. These levels of trust are used later to determine actions taken by a host at the arrival of an agent. This technique uses fuzzy logic as a method to calculate levels of trust and to define protective actions in regard to those levels

    Data Reductions and Combinatorial Bounds for Improved Approximation Algorithms

    Full text link
    Kernelization algorithms in the context of Parameterized Complexity are often based on a combination of reduction rules and combinatorial insights. We will expose in this paper a similar strategy for obtaining polynomial-time approximation algorithms. Our method features the use of approximation-preserving reductions, akin to the notion of parameterized reductions. We exemplify this method to obtain the currently best approximation algorithms for \textsc{Harmless Set}, \textsc{Differential} and \textsc{Multiple Nonblocker}, all of them can be considered in the context of securing networks or information propagation
    corecore