2,016 research outputs found

    Vortex lattices in the lowest Landau level for confined Bose-Einstein condensates

    Full text link
    We present the results of numerical calculations of the groundstates of weakly-interacting Bose-Einstein condensates containing large numbers of vortices. Our calculations show that these groundstates appear to be close to uniform triangular vortex lattices. However, slight deviations from a uniform triangular lattice have dramatic consequences on the overall particle distribution. In particular, we demonstrate that the overall particle distribution averaged on a lengthscale large compared to the vortex lattice constant is well approximated by a Thomas-Fermi profile.Comment: 5 pages, 4 figure

    Metals get an awkward cousin

    Full text link
    A newly predicted state of matter is a simple theoretical example of a phase that conducts electricity but is not smoothly connected to our conventional model of metals. A viewpoint on arXiv:1201.5998.Comment: Physics 5, 82 (2012

    Integrable vortex-type equations on the two-sphere

    Full text link
    We consider the Yang-Mills instanton equations on the four-dimensional manifold S^2xSigma, where Sigma is a compact Riemann surface of genus g>1 or its covering space H^2=SU(1,1)/U(1). Introducing a natural ansatz for the gauge potential, we reduce the instanton equations on S^2xSigma to vortex-type equations on the sphere S^2. It is shown that when the scalar curvature of the manifold S^2xSigma vanishes, the vortex-type equations are integrable, i.e. can be obtained as compatibility conditions of two linear equations (Lax pair) which are written down explicitly. Thus, the standard methods of integrable systems can be applied for constructing their solutions. However, even if the scalar curvature of S^2xSigma does not vanish, the vortex equations are well defined and have solutions for any values of the topological charge N. We show that any solution to the vortex equations on S^2 with a fixed topological charge N corresponds to a Yang-Mills instanton on S^2xSigma of charge (g-1)N.Comment: 14 pages; v2: clarifying comments added, published versio

    Surface impedance of superconductors with magnetic impurities

    Full text link
    Motivated by the problem of the residual surface resistance of the superconducting radio-frequency (SRF) cavities, we develop a microscopic theory of the surface impedance of s-wave superconductors with magnetic impurities. We analytically calculate the current response function and surface impedance for a sample with spatially uniform distribution of impurities, treating magnetic impurities in the framework of the Shiba theory. The obtained general expressions hold in a wide range of parameter values, such as temperature, frequency, mean free path, and exchange coupling strength. This generality, on the one hand, allows for direct numerical implementation of our results to describe experimental systems (SRF cavities, superconducting qubits) under various practically relevant conditions. On the other hand, explicit analytical expressions can be obtained in a number of limiting cases, which makes possible further theoretical investigation of certain regimes. As a feature of key relevance to SRF cavities, we show that in the regime of "gapless superconductivity" the surface resistance exhibits saturation at zero temperature. Our theory thus explicitly demonstrates that magnetic impurities, presumably contained in the oxide surface layer of the SRF cavities, provide a microscopic mechanism for the residual resistance.Comment: 9 pages, 3 figs; v2: published versio

    A Fermi Sea of Heavy Electrons (a Kondo Lattice) is Never a Fermi Liquid

    Full text link
    I demonstrate a contradiction which arises if we assume that the Fermi surface in a heavy electron metal represents a finite jump in occupancy

    The effective action and equations of motion of curved local and global vortices: Role of the field excitations

    Full text link
    The effective actions for both local and global curved vortices are derived, based on the derivative expansion of the corresponding field theoretic actions of the nonrelativistic Abelian Higgs and Goldstone models. The role of excitations of the modulus and the phase of the scalar field and of the gauge field (the Bogolyubov-Anderson mode) emitted and reabsorbed by vortices is elucidated. In case of the local (gauge) magnetic vortex, they are necessary for cancellation of the long distance divergence when using the transverse form of the electric gauge field strength of the background field. In case of global vortex taking them into account results in the Greiter-Wilczek-Witten form of the effective action for the Goldstone mode. The expressions for transverse Magnus-like force and the vortex effective mass for both local and global vortices are found. The equations of motion of both type of vortices including the terms due to the field excitations are obtained and solved in cases of large and small contour displacements.Comment: 16 pages, no figures; accepted for publication in Int. Journ. Mod. Phys.

    Pressure effects on the superconducting properties of YBa_2Cu_4O_8

    Full text link
    Measurements of the magnetization under high hydrostatic pressure (up to 10.2 kbar) in YBa_2Cu_4O_8 were carried out. From the scaling analysis of the magnetization data the pressure induced shifts of the transition temperature T_c, the volume V and the anisotropy \gamma have been obtained. It was shown that the pressure induced relative shift of T_c mirrors essentially that of the anisotropy. This observation uncovers a novel generic property of anisotropic type II superconductors, that inexistent in the isotropic case.Comment: 4 pages, 3 figure

    Confinement in N=1 SQCD: One Step Beyond Seiberg's Duality

    Full text link
    We consider N=1 supersymmetric quantum chromodynamics (SQCD) with the gauge group U(N_c) and N_c+N quark flavors. N_c flavors are massless; the corresponding squark fields develop (small) vacuum expectation values (VEVs) on the Higgs branch. Extra N flavors are endowed with small (and equal) mass terms. We study this theory through its Seiberg's dual: U(N) gauge theory with N_c +N flavors of "dual quark" fields plus a gauge-singlet mesonic field M. The original theory is referred to as "quark theory" while the dual one is termed "monopole theory." The suggested mild deformation of Seiberg's procedure changes the dynamical regime of the monopole theory from infrared free to asymptotically free at large distances. We show that, upon condensation of the "dual quarks," the dual theory supports non-Abelian flux tubes (strings). Seiberg's duality is extended beyond purely massless states to include light states on both sides. Being interpreted in terms of the quark theory, the monopole-theory flux tubes are supposed to carry chromoelectric fields. The string junctions -- confined monopole-theory monopoles -- can be viewed as "constituent quarks" of the original quark theory. We interpret closed strings as glueballs of the original quark theory. Moreover, there are string configurations formed by two junctions connected by a pair of different non-Abelian strings. These can be considered as constituent quark mesons of the quark theory.Comment: 30 pages, 3 figures; v2 a reference added, minor comments added; final version to be published in PR

    Magnetic-field-induced superconductivity and superfluidity of W and Z bosons: in tandem transport and kaleidoscopic vortex states

    Get PDF
    We show that in a background of a sufficiently strong magnetic field the electroweak sector of the quantum vacuum exhibits superconducting and, unexpectedly, superfluid properties due to the magnetic-field-induced condensation of, respectively, W and Z bosons. The phase transition to the "tandem" superconductor-superfluid phase -- which is weakly sensitive to the Higgs sector of the standard model -- occurs at the critical magnetic field of 10^{20} T. The superconductor-superfluid phase of the electroweak vacuum has anisotropic transport properties as both charged and neutral superflows may propagate only along the magnetic field axis. The ground state possesses an unusual "kaleidoscopic" structure made of a hexagonal lattice of superfluid vortices superimposed on a triangular lattice of superconductor vortices.Comment: 7 pages, 11 figures; v2: discussions extended, matches the published versio

    Vortex Lattices in Rotating Atomic Bose Gases with Dipolar Interactions

    Full text link
    We show that dipolar interactions have dramatic effects on the groundstates of rotating atomic Bose gases in the weak interaction limit. With increasing dipolar interaction (relative to the net contact interaction), the mean-field, or high filling fraction, groundstate undergoes a series of transitions between vortex lattices of different symmetries: triangular, square, ``stripe'', and ``bubble'' phases. We also study the effects of dipolar interactions on the quantum fluids at low filling fractions. We show that the incompressible Laughlin state at filling fraction ν=1/2\nu=1/2 is replaced by compressible stripe and bubble phases.Comment: 4 pages, 2 figure
    corecore