290,799 research outputs found

    Squeezed Gluon Condensate and Quark Confinement in the Global Color Model of QCD

    Full text link
    We discuss how the presence of a squeezed gluon vacuum might lead to quark confinement in the framework of the global colour model of QCD. Using reduced phase space quantization of massive vector theory we construct a Lorentz invariant and colourless squeezed gluon condensate and show that it induces a permanent, nonlocal quark interaction (delta-function in 4-momentum space), which according to Munczek and Nemirovsky might lead to quark confinement. Our approach makes it possible to relate the strength of this effective confining quark interaction to the strength of the physical gluon condensate.Comment: 18 pages LaTeX, to appear in Int. J. Mod. Phys.

    Analytical approximation for single-impurity Anderson model

    Get PDF
    We have applied the recently developed dual fermion technique to the spectral properties of single-band Anderson impurity problem (SIAM). In our approach a series expansion is constructed in vertices of the corresponding atomic Hamiltonian problem. This expansion contains a small parameter in two limiting cases: in the weak coupling case (U/t→0U/t \to 0), due to the smallness of the irreducible vertices, and near the atomic limit (U/t→∞U/t \to \infty), when bare propagators are small. Reasonable results are obtained also for the most interesting case of strong correlations (U≈tU \approx t). The atomic problem of the Anderson impurity model has a degenerate ground state, so the application of the perturbation theory is not straightforward. We construct a special approach dealing with symmetry-broken ground state of the renormalized atomic problem. Formulae for the first-order dual diagram correction are obtained analytically in the real-time domain. Most of the Kondo-physics is reproduced: logarithmic contributions to the self energy arise, Kondo-like peak at the Fermi level appears, and the Friedel sum rule is fulfilled. Our approach describes also renormalization of atomic resonances due to hybridization with a conduction band. A generalization of the proposed scheme to a multi-orbital case can be important for the realistic description of correlated solids.Comment: 6 pages, 5 figure

    Role of causality in ensuring unconditional security of relativistic quantum cryptography

    Get PDF
    The problem of unconditional security of quantum cryptography (i.e. the security which is guaranteed by the fundamental laws of nature rather than by technical limitations) is one of the central points in quantum information theory. We propose a relativistic quantum cryptosystem and prove its unconditional security against any eavesdropping attempts. Relativistic causality arguments allow to demonstrate the security of the system in a simple way. Since the proposed protocol does not employ collective measurements and quantum codes, the cryptosystem can be experimentally realized with the present state-of-art in fiber optics technologies. The proposed cryptosystem employs only the individual measurements and classical codes and, in addition, the key distribution problem allows to postpone the choice of the state encoding scheme until after the states are already received instead of choosing it before sending the states into the communication channel (i.e. to employ a sort of ``antedate'' coding).Comment: 9 page

    Relativistic Restrictions on the Distinguishability of Orthogonal Quantum States

    Full text link
    We analyze the restrictions on the distinguishability of quantum states imposed by special relativity. An explicit expression relating the error probability for distinguishing between two orthogonal single-photon states with the time TT elapsed from the start of the measurement procedure until the measurement result is obtained by the observer.Comment: 9 pages, 1 figure (misprints in formulas corrected

    NICMOS images of JVAS/CLASS gravitational lens systems

    Get PDF
    We present Hubble Space Telescope (HST) infrared images of four gravitational lens systems from the JVAS/CLASS gravitational lens survey and compare the new infrared HST pictures with previously published WFPC2 HST optical images and radio maps. Apart from the wealth of information that we get from the flux ratios and accurate positions and separations of the components of the lens systems that we can use as inputs for better constraints on the lens models we are able to discriminate between reddening and optical/radio microlensing as the possible cause of differences observed in the flux ratios of the components across the three wavelength bands. Substantial reddening has been known to be present in the lens system B1600+434 and has been further confirmed by the present infrared data. In the two systems B0712+472 and B1030+074 microlensing has been pinpointed down as the main cause of the flux ratio discrepancy both in the optical/infrared and in the radio, the radio possibly caused by the substructure revealed in the lensing galaxies. In B0218+357 however the results are still not conclusive. If we are actually seeing the two "true" components of the lens system then the flux ratio differences are attributed to a combination of microlensing and reddening or alternatively due to some variability in at least one of the images. Otherwise the second "true" component of B0218+357 maybe completely absorbed by a molecular cloud and the anomalous flux density ratios and large difference in separation between the optical/infrared and radio that we see can be explained by emission from either a foreground object or from part of the lensing galaxy.Comment: 10 pages, 4 figures (original higher resolution figures can be obtained at the e-mail above), to appear in MNRAS (accepted

    Collisional and thermal ionization of sodium Rydberg atoms I. Experiment for nS and nD atoms with n=8-20

    Full text link
    Collisional and thermal ionization of sodium nS and nD Rydberg atoms with n=8-20 has been studied. The experiments were performed using a two-step pulsed laser excitation in an effusive atomic beam at atom density of about 2 10^{10} cm^{-3}. Molecular and atomic ions from associative, Penning, and thermal ionization processes were detected. It has been found that the atomic ions were created mainly due to photoionization of Rydberg atoms by photons of blackbody radiation at the ambient temperature of 300K. Blackbody ionization rates and effective lifetimes of Rydberg states of interest were determined. The molecular ions were found to be from associative ionization in Na(nL)+Na(3S) collisions. Rate constants of associative ionization have been measured using an original method based on relative measurements of Na_{2}^{+} and Na^{+} ion signals.Comment: 23 pages, 10 figure

    Kaon Condensation in the Bound-State Approach to the Skyrme Model

    Full text link
    We explore kaon condensation using the bound-state approach to the Skyrme model on a 3-sphere. The condensation occurs when the energy required to produce a K−K^- falls below the electron fermi level. This happens at the baryon number density on the order of 3--4 times nuclear density.Comment: LaTeX format, 15 pages. 3 Postscript figures, compressed and uuencode

    A New Approach to Non-Commutative U(N) Gauge Fields

    Full text link
    Based on the recently introduced model of arXiv:0912.2634 for non-commutative U(1) gauge fields, a generalized version of that action for U(N) gauge fields is put forward. In this approach to non-commutative gauge field theories, UV/IR mixing effects are circumvented by introducing additional 'soft breaking' terms in the action which implement an IR damping mechanism. The techniques used are similar to those of the well-known Gribov-Zwanziger approach to QCD.Comment: 11 pages; v2 minor correction

    Labels for non-individuals

    Full text link
    Quasi-set theory is a first order theory without identity, which allows us to cope with non-individuals in a sense. A weaker equivalence relation called ``indistinguishability'' is an extension of identity in the sense that if xx is identical to yy then xx and yy are indistinguishable, although the reciprocal is not always valid. The interesting point is that quasi-set theory provides us a useful mathematical background for dealing with collections of indistinguishable elementary quantum particles. In the present paper, however, we show that even in quasi-set theory it is possible to label objects that are considered as non-individuals. We intend to prove that individuality has nothing to do with any labelling process at all, as suggested by some authors. We discuss the physical interpretation of our results.Comment: 11 pages, no figure

    Josephson Coupling, Phase Correlations, and Josephson Plasma Resonance in Vortex Liquid Phase

    Full text link
    Josephson plasma resonance has been introduced recently as a powerful tool to probe interlayer Josephson coupling in different regions of the vortex phase diagram in layered superconductors. In the liquid phase, the high temperature expansion with respect to the Josephson coupling connects the Josephson plasma frequency with the phase correlation function. This function, in turn, is directly related to the pair distribution function of the liquid. We develop a recipe to extract the phase and density correlation functions from the dependencies of the plasma resonance frequency ωp(B)\omega_p({\bf B}) and the cc axis conductivity σc(B)\sigma_c({\bf B}) on the {\it ab}-component of the magnetic field at fixed {\it c} -component. Using Langevin dynamic simulations of two-dimensional vortex arrays we calculate density and phase correlation functions at different temperatures. Calculated phase correlations describe very well the experimental angular dependence of the plasma resonance field. We also demonstrate that in the case of weak damping in the liquid phase, broadening of the JPR line is caused mainly by random Josephson coupling arising from the density fluctuations of pancake vortices. In this case the JPR line has a universal shape, which is determined only by parameters of the superconductors and temperature.Comment: 22 pages, 6 figures, to appear in Phys. Rev. B, December
    • 

    corecore