6,886 research outputs found

    Evidence for self-interaction of charge distribution in charge-coupled devices

    Full text link
    Charge-coupled devices (CCDs) are widely used in astronomy to carry out a variety of measurements, such as for flux or shape of astrophysical objects. The data reduction procedures almost always assume that ther esponse of a given pixel to illumination is independent of the content of the neighboring pixels. We show evidence that this simple picture is not exact for several CCD sensors. Namely, we provide evidence that localized distributions of charges (resulting from star illumination or laboratory luminous spots) tend to broaden linearly with increasing brightness by up to a few percent over the whole dynamic range. We propose a physical explanation for this "brighter-fatter" effect, which implies that flatfields do not exactly follow Poisson statistics: the variance of flatfields grows less rapidly than their average, and neighboring pixels show covariances, which increase similarly to the square of the flatfield average. These covariances decay rapidly with pixel separation. We observe the expected departure from Poisson statistics of flatfields on CCD devices and show that the observed effects are compatible with Coulomb forces induced by stored charges that deflect forthcoming charges. We extract the strength of the deflections from the correlations of flatfield images and derive the evolution of star shapes with increasing flux. We show for three types of sensors that within statistical uncertainties,our proposed method properly bridges statistical properties of flatfields and the brighter-fatter effect

    Genetic contribution to radiographic severity in osteoarthritis of the knee

    Get PDF
    Objective Knee osteoarthritis (OA) has a significant genetic component. The authors have assessed the role of three variants reported to influence risk of knee OA with p<5×10–8 in determining patellofemoral and tibiofemoral Kellgren Lawrence (K/L) grade in knee OA cases. Methods 3474 knee OA cases with sky-line and weight-bearing antero-posterior x-rays of the knee were selected based on the presentation of K/L grade ≥2 at either the tibiofemoral or patellofemoral compartments for one or both knees. Patients belonging to three UK cohorts, were genotyped for rs143383, rs4730250 and rs11842874 mapping to the GDF5, COG5 and MCF2L genes, respectively. The association between tibiofemoral K/L grade and patellofemoral K/L grade was assessed after adjusting for age, gender and body mass index. Results No significant association was found between the rs4730250 and radiographic severity. The rs11842874 mapping to MCF2L was found to be nominally significantly associated with patellofemoral K/L grade as a quantitative trait (p=0.027) but not as a binary trait. The GDF5 single nucleotide polymorphism rs143383 was associated with tibiofemoral K/L grade (β=0.05 (95% CI 0.02 to 0.08) p=0.0011). Conclusions Our data indicate that within individuals affected by radiographic knee OA, OAGDF5 has a modest but significant effect on radiographic severity after adjustment for the major risk factors

    Two-qutrit Entanglement Witnesses and Gell-Mann Matrices

    Full text link
    The Gell-Mann λ\lambda matrices for Lie algebra su(3) are the natural basis for the Hilbert space of Hermitian operators acting on the states of a three-level system(qutrit). So the construction of EWs for two-qutrit states by using these matrices may be an interesting problem. In this paper, several two-qutrit EWs are constructed based on the Gell-Mann matrices by using the linear programming (LP) method exactly or approximately. The decomposability and non-decomposability of constructed EWs are also discussed and it is shown that the λ\lambda-diagonal EWs presented in this paper are all decomposable but there exist non-decomposable ones among λ\lambda-non-diagonal EWs.Comment: 25 page

    Assignment of the NV0 575 nm zero-phonon line in diamond to a 2E-2A2 transition

    Full text link
    The time-averaged emission spectrum of single nitrogen-vacancy defects in diamond gives zero-phonon lines of both the negative charge state at 637 nm (1.945 eV) and the neutral charge state at 575 nm (2.156 eV). This occurs through photo-conversion between the two charge states. Due to strain in the diamond the zero-phonon lines are split and it is found that the splitting and polarization of the two zero-phonon lines are the same. From this observation and consideration of the electronic structure of the nitrogen-vacancy center it is concluded that the excited state of the neutral center has A2 orbital symmetry. The assignment of the 575 nm transition to a 2E - 2A2 transition has not been established previously.Comment: 5 pages, 5 figure

    Spin-Dependent Quantum Emission in Hexagonal Boron Nitride at Room Temperature

    Get PDF
    Optically addressable spins associated with defects in wide-bandgap semiconductors are versatile platforms for quantum information processing and nanoscale sensing, where spin-dependent inter-system crossing (ISC) transitions facilitate optical spin initialization and readout. Recently, the van der Waals material hexagonal boron nitride (h-BN) has emerged as a robust host for quantum emitters (QEs), but spin-related effects have yet to be observed. Here, we report room-temperature observations of strongly anisotropic photoluminescence (PL) patterns as a function of applied magnetic field for select QEs in h-BN. Field-dependent variations in the steady-state PL and photon emission statistics are consistent with an electronic model featuring a spin-dependent ISC between triplet and singlet manifolds, indicating that optically-addressable spin defects are present in h-BN - a versatile two-dimensional material promising efficient photon extraction, atom-scale engineering, and the realization of spin-based quantum technologies using van der Waals heterostructures.Comment: 38 pages, 34 figure

    Rigorous Multicomponent Reactive Separations Modelling : Complete Consideration of Reaction-Diffusion Phenomena

    Get PDF
    This paper gives the first step of the development of a rigorous multicomponent reactive separation model. Such a model is highly essential to further the optimization of acid gases removal plants (CO2 capture, gas treating, etc.) in terms of size and energy consumption, since chemical solvents are conventionally used.Firstly, two main modelling approaches are presented: the equilibrium-based and the rate-based approaches. Secondly, an extended rate-based model with rigorous modelling methodology for diffusion-reaction phenomena is proposed. The film theory and the generalized Maxwell-Stefan equations are used in order to characterize multicomponent interactions. The complete chain of chemical reactions is taken into account. The reactions can be kinetically controlled or at chemical equilibrium, and they are considered for both liquid film and liquid bulk. Thirdly, the method of numerical resolution is described. Coupling the generalized Maxwell-Stefan equations with chemical equilibrium equations leads to a highly non-linear Differential-Algebraic Equations system known as DAE index 3. The set of equations is discretized with finite-differences as its integration by Gear method is complex. The resulting algebraic system is resolved by the Newton- Raphson method. Finally, the present model and the associated methods of numerical resolution are validated for the example of esterification of methanol. This archetype non-electrolytic system permits an interesting analysis of reaction impact on mass transfer, especially near the phase interface. The numerical resolution of the model by Newton-Raphson method gives good results in terms of calculation time and convergence. The simulations show that the impact of reactions at chemical equilibrium and that of kinetically controlled reactions with high kinetics on mass transfer is relatively similar. Moreover, the Fick’s law is less adapted for multicomponent mixtures where some abnormalities such as counter-diffusion take place

    Detecting multipartite entanglement

    Get PDF
    We discuss the problem of determining whether the state of several quantum mechanical subsystems is entangled. As in previous work on two subsystems we introduce a procedure for checking separability that is based on finding state extensions with appropriate properties and may be implemented as a semidefinite program. The main result of this work is to show that there is a series of tests of this kind such that if a multiparty state is entangled this will eventually be detected by one of the tests. The procedure also provides a means of constructing entanglement witnesses that could in principle be measured in order to demonstrate that the state is entangled.Comment: 9 pages, REVTE
    corecore