946 research outputs found
Concave Plasmonic Particles: Broad-Band Geometrical Tunability in the Near Infra-Red
Optical resonances spanning the Near and Short Infra-Red spectral regime were
exhibited experimentally by arrays of plasmonic nano-particles with concave
cross-section. The concavity of the particle was shown to be the key ingredient
for enabling the broad band tunability of the resonance frequency, even for
particles with dimensional aspect ratios of order unity. The atypical
flexibility of setting the resonance wavelength is shown to stem from a unique
interplay of local geometry with surface charge distributions
Atomic-scale confinement of optical fields
In the presence of matter there is no fundamental limit preventing
confinement of visible light even down to atomic scales. Achieving such
confinement and the corresponding intensity enhancement inevitably requires
simultaneous control over atomic-scale details of material structures and over
the optical modes that such structures support. By means of self-assembly we
have obtained side-by-side aligned gold nanorod dimers with robust
atomically-defined gaps reaching below 0.5 nm. The existence of
atomically-confined light fields in these gaps is demonstrated by observing
extreme Coulomb splitting of corresponding symmetric and anti-symmetric dimer
eigenmodes of more than 800 meV in white-light scattering experiments. Our
results open new perspectives for atomically-resolved spectroscopic imaging,
deeply nonlinear optics, ultra-sensing, cavity optomechanics as well as for the
realization of novel quantum-optical devices
Gender-Responsive Budgeting as Fiscal Innovation: Evidence from India on 'Processes'
Gender-responsive budgeting (GRB) is a fiscal innovation. Innovation, for the purposes of this paper, is defined as a way of transforming a new concept into tangible processes, resources, and institutional mechanisms in which a benefit meets identified problems. GRB is a fiscal innovation in that it translates gender commitments into fiscal commitments by applying a "gender lens" to the identified processes, resources, and institutional mechanisms, and arrives at a desirable benefit incidence. The theoretical treatment of gender budgeting as a fiscal innovation is not incorporated, as the focus of this paper is broadly on the processes involved. GRB as an innovation has four specific components: knowledge processes and networking, institutional mechanisms, learning processes and building capacities, and public accountability and benefit incidence. The paper analyzes these four components of GRB in the context of India. The National Institute of Public Finance and Policy has been the pioneer of gender budgeting in India, and also played a significant role in institutionalizing gender budgeting within the Ministry of Finance, Government of India, in 2005. The Expert Committee Group on "Classification of Budgetary Transactions" makes recommendations on gender budgeting - Ashok Lahiri Committee recommendations - that will become part of the institutionalization process, integrating the analytical matrices of fiscal data through a gender lens and also the institutional innovations for GRB. Revisiting the 2004 Lahiri recommendations and revamping the process of GRB in India is inevitable, at both ex ante and ex post levels
Macrophage-derived extracellular vesicle-packaged WNTs rescue intestinal stem cells and enhance survival after radiation injury
WNT/β-catenin signalling is crucial for intestinal homoeostasis. The intestinal epithelium and stroma are the major source of WNT ligands but their origin and role in intestinal stem cell (ISC) and epithelial repair remains unknown. Macrophages are a major constituent of the intestinal stroma. Here, we analyse the role of macrophage-derived WNT in intestinal repair in mice by inhibiting their release using a macrophage-restricted ablation of Porcupine, a gene essential for WNT synthesis. Such Porcn-depleted mice have normal intestinal morphology but are hypersensitive to radiation injury in the intestine compared with wild-type (WT) littermates. Porcn-null mice are rescued from radiation lethality by treatment with WT but not Porcn-null bone marrow macrophage-conditioned medium (CM). Depletion of extracellular vesicles (EV) from the macrophage CM removes WNT function and its ability to rescue ISCs from radiation lethality. Therefore macrophage-derived EV-packaged WNTs are essential for regenerative response of intestine against radiation
Identification of plastic constitutive parameters at large deformations from three dimensional displacement fields
The aim of this paper is to provide a general procedure to extract the constitutive parameters of a plasticity model starting from displacement measurements and using the Virtual Fields Method. This is a classical inverse problem which has been already investigated in the literature, however several new features are developed here. First of all the procedure applies to a general three-dimensional displacement field which leads to large plastic deformations, no assumptions are made such as plane stress or plane strain although only pressure-independent plasticity is considered. Moreover the equilibrium equation is written in terms of the deviatoric stress tensor that can be directly computed from the strain field without iterations. Thanks to this, the identification routine is much faster compared to other inverse methods such as finite element updating. The proposed method can be a valid tool to study complex phenomena which involve severe plastic deformation and where the state of stress is completely triaxial, e.g. strain localization or necking occurrence. The procedure has been validated using a three dimensional displacement field obtained from a simulated experiment. The main potentialities as well as a first sensitivity study on the influence of measurement errors are illustrated
Mode imaging and selection in strongly coupled nanoantennas
The number of eigenmodes in plasmonic nanostructures increases with
complexity due to mode hybridization, raising the need for efficient mode
characterization and selection. Here we experimentally demonstrate direct
imaging and selective excitation of the bonding and antibonding plasmon mode in
symmetric dipole nanoantennas using confocal two-photon photoluminescence
mapping. Excitation of a high-quality-factor antibonding resonance manifests
itself as a two-lobed pattern instead of the single spot observed for the broad
bonding resonance, in accordance with numerical simulations. The two-lobed
pattern is observed due to the fact that excitation of the antibonding mode is
forbidden for symmetric excitation at the feedgap, while concomitantly the mode
energy splitting is large enough to suppress excitation of the bonding mode.
The controlled excitation of modes in strongly coupled plasmonic nanostructures
is mandatory for efficient sensors, in coherent control as well as for
implementing well-defined functionalities in complex plasmonic devices.Comment: 11 pages, 5 figures, 1 supplementary informatio
Resonances On-Demand for Plasmonic Nano-Particles
A method for designing plasmonic particles with desired resonance spectra is
presented. The method is based on repetitive perturbations of an initial
particle shape while calculating the eigenvalues of the various quasistatic
resonances. The method is rigorously proved, assuring a solution exists for any
required spectral resonance location. Resonances spanning the visible and the
near-infrared regimes, as designed by our method, are verified using
finite-difference time-domain simulations. A novel family of particles with
collocated dipole-quadrupole resonances is designed, demonstrating the unique
power of the method. Such on-demand engineering enables strict realization of
nano-antennas and metamaterials for various applications requiring specific
spectral functions
- …