68 research outputs found

    Bacterial genotoxins induce T cell senescence

    Get PDF
    Several types of pathogenic bacteria produce genotoxins that induce DNA damage in host cells. Accumulating evidence suggests that a central function of these genotoxins is to dysregulate the host's immune response, but the underlying mechanisms remain unclear. To address this issue, we investigated the effects of the most widely expressed bacterial genotoxin, the cytolethal distending toxin (CDT), on T cells—the key mediators of adaptive immunity. We show that CDT induces premature senescence in activated CD4 T cells in vitro and provide evidence suggesting that infection with genotoxin-producing bacteria promotes T cell senescence in vivo. Moreover, we demonstrate that genotoxin-induced senescent CD4 T cells assume a senescence-associated secretory phenotype (SASP) which, at least partly, is orchestrated by the ATM-p38 signaling axis. These findings provide insight into the immunomodulatory properties of bacterial genotoxins and uncover a putative link between bacterial infections and T cell senescence

    Androgen dependent mechanisms of pro-angiogenic networks in placental and tumor development

    Get PDF
    © 2017 Elsevier Ltd The placenta and tumors share important characteristics, including a requirement to establish effective angiogenesis. In the case of the placenta, optimal angiogenesis is required to sustain the blood flow required to maintain a successful pregnancy, whereas in tumors establishing new blood supplies is considered a key step in supporting metastases. Therefore the development of novel angiogenesis inhibitors has been an area of active research in oncology. A subset of the molecular processes regulating angiogenesis are well understood in the context of both early placentation and tumorigenesis. In this review we focus on the well-established role of androgen regulation of angiogenesis in cancer and relate these mechanisms to placental angiogenesis. The physiological actions of androgens are mediated by the androgen receptor (AR), a ligand dependent transcription factor. Androgens and the AR are essential for normal male embryonic development, puberty and lifelong health. Defects in androgen signalling are associated with a diverse range of clinical disorders in men and women including disorders of sex development (DSD), polycystic ovary syndrome in women and many cancers. We summarize the diverse molecular mechanisms of androgen regulation of angiogenesis and infer the potential significance of these pathways to normal and pathogenic placental function. Finally, we offer potential research applications of androgen-targeting molecules developed to treat cancer as investigative tools to help further delineate the role of androgen signalling in placental function and maternal and offspring health in animal models

    Cytotoxicity of CD56bright NK Cells towards Autologous Activated CD4+ T Cells Is Mediated through NKG2D, LFA-1 and TRAIL and Dampened via CD94/NKG2A

    Get PDF
    In mouse models of chronic inflammatory diseases, Natural Killer (NK) cells can play an immunoregulatory role by eliminating chronically activated leukocytes. Indirect evidence suggests that NK cells may also be immunoregulatory in humans. Two subsets of human NK cells can be phenotypically distinguished as CD16+CD56dim and CD16dim/−CD56bright. An expansion in the CD56bright NK cell subset has been associated with clinical responses to therapy in various autoimmune diseases, suggesting an immunoregulatory role for this subset in vivo. Here we compared the regulation of activated human CD4+ T cells by CD56dim and CD56bright autologous NK cells in vitro. Both subsets efficiently killed activated, but not resting, CD4+ T cells. The activating receptor NKG2D, as well as the integrin LFA-1 and the TRAIL pathway, played important roles in this process. Degranulation by NK cells towards activated CD4+ T cells was enhanced by IL-2, IL-15, IL-12+IL-18 and IFN-α. Interestingly, IL-7 and IL-21 stimulated degranulation by CD56bright NK cells but not by CD56dim NK cells. NK cell killing of activated CD4+ T cells was suppressed by HLA-E on CD4+ T cells, as blocking the interaction between HLA-E and the inhibitory CD94/NKG2A NK cell receptor enhanced NK cell degranulation. This study provides new insight into CD56dim and CD56bright NK cell-mediated elimination of activated autologous CD4+ T cells, which potentially may provide an opportunity for therapeutic treatment of chronic inflammation
    • 

    corecore