53 research outputs found

    EMISSION LINE ASSIMETRY IN ACTIVE GALAXIES: Mrk 533 AND Mrk 110

    Get PDF
    Abstract. In this work emission line asymmetries detected in two different types of Active Galactic Nuclei (AGN) -Seyfert 1 galaxy Mrk 110 and Seyfert 2 galaxy Mrk 533 were analyzed. Since emission lines in two galaxies arise in different emitting regions, detailed spectrum analysis gave the insight into kinematical properties of the Narrow Line and the Broad Line region (NLR and BLR) of this galaxies. We used several methods in the analysis procedure: (a) in order to analyse line profiles we performed profile decomposition into Gaussian components, (b) to study kinematical properties of the gas in the stellar disk, we used the model of "tilted-rings" (Begeman 1989), (c) to determine the sources of ionization of emitting region, we used the Veilleux and Osterbrock diagnostic diagram (Veilleux and Osterbrock 1987), (d) thermodynamical properties of the BLR were determined using the Boltzman plot method We showed that the red-shift and asymmetry of emission lines in Mrk 110 are probable caused by the strong gravitational field of the super massive black hole in the center of this galaxy. On the other hand, detailed analysis of 3D spectrophotometric observation of Mrk 533 made possible to map the outflow velocities from the very center of this galaxy, as well as shock waves in the circum-nuclear region, and to analyse the increase of the blue asymmetry with the increase of the outflow velocity (in more details se

    An Isolated Stellar-Mass Black Hole Detected Through Astrometric Microlensing

    Get PDF
    We report the first unambiguous detection and mass measurement of an isolated stellar-mass black hole (BH). We used the Hubble Space Telescope (HST) to carry out precise astrometry of the source star of the long-duration (t_E ~ 270 days), high-magnification microlensing event MOA-2011-BLG-191/OGLE-2011-BLG-0462, in the direction of the Galactic bulge. HST imaging, conducted at eight epochs over an interval of six years, reveals a clear relativistic astrometric deflection of the background star's apparent position. Ground-based photometry shows a parallactic signature of the effect of the Earth's motion on the microlensing light curve. Combining the HST astrometry with the ground-based light curve and the derived parallax, we obtain a lens mass of 7.1 +/- 1.3 M_Sun and a distance of 1.58 +/- 0.18 kpc. We show that the lens emits no detectable light, which, along with having a mass higher than is possible for a white dwarf or neutron star, confirms its BH nature. Our analysis also provides an absolute proper motion for the BH. The proper motion is offset from the mean motion of Galactic-disk stars at similar distances by an amount corresponding to a transverse space velocity of ~45 km/s, suggesting that the BH received a modest natal 'kick' from its supernova explosion. Previous mass determinations for stellar-mass BHs have come from radial-velocity measurements of Galactic X-ray binaries, and from gravitational radiation emitted by merging BHs in binary systems in external galaxies. Our mass measurement is the first ever for an isolated stellar-mass BH using any technique
    corecore