5 research outputs found

    Fusion of IMU and Vision for Absolute Scale Estimation in Monocular SLAM

    Get PDF
    The fusion of inertial and visual data is widely used to improve an object's pose estimation. However, this type of fusion is rarely used to estimate further unknowns in the visual framework. In this paper we present and compare two different approaches to estimate the unknown scale parameter in a monocular SLAM framework. Directly linked to the scale is the estimation of the object's absolute velocity and position in 3D. The first approach is a spline fitting task adapted from Jung and Taylor and the second is an extended Kalman filter. Both methods have been simulated offline on arbitrary camera paths to analyze their behavior and the quality of the resulting scale estimation. We then embedded an online multi rate extended Kalman filter in the Parallel Tracking and Mapping (PTAM) algorithm of Klein and Murray together with an inertial sensor. In this inertial/monocular SLAM framework, we show a real time, robust and fast converging scale estimation. Our approach does not depend on known patterns in the vision part nor a complex temporal synchronization between the visual and inertial senso

    An Evaluation of Moreau’s Time-Stepping Scheme for the Simulation of a Legged Robot

    Get PDF
    International audienceA state-of-the-art simulation technique that solves the equations of motion together with the set-valued contact and impulse laws by the time-stepping scheme of Moreau is introduced to the legged robotics community. An analysis is given that shows which of the many variations of the method fits best to legged robots. Two different methods to solve the discretized normal cone inclusions are compared: the projected over-relaxed Jacobi and Gauss-Seidel iteration. The methods are evaluated for an electrically-driven quadrupedal robot in terms of robustness, accuracy, speed and ease of use. Furthermore, the dependence of the simulation speed on the choice of the generalized coordinates is examined. The proposed technique is implemented in C++ and compared to a fast and simple approach based on compliant contact models. In conclusion, the introduced method with hard contacts is very beneficial for the simulation of legged robots

    Computing Non-Smooth Dynamics on the GPU

    No full text

    Fusion of IMU and Vision for Absolute Scale Estimation in Monocular SLAM

    No full text
    ISSN:0921-0296ISSN:1573-040
    corecore