49 research outputs found

    Explicit representations of biorthogonal polynomials

    Full text link
    Given a parametrised weight function ω(x,μ)\omega(x,\mu) such that the quotients of its consecutive moments are M\"obius maps, it is possible to express the underlying biorthogonal polynomials in a closed form \cite{IN2}. In the present paper we address ourselves to two related issues. Firstly, we demonstrate that, subject to additional assumptions, every such ω\omega obeys (in xx) a linear differential equation whose solution is a generalized hypergeometric function. Secondly, using a generalization of standard divided differences, we present a new explicit representation of the underlying orthogonal polynomials

    Weak convergence of finite element approximations of linear stochastic evolution equations with additive noise II. Fully discrete schemes

    Get PDF
    We present an abstract framework for analyzing the weak error of fully discrete approximation schemes for linear evolution equations driven by additive Gaussian noise. First, an abstract representation formula is derived for sufficiently smooth test functions. The formula is then applied to the wave equation, where the spatial approximation is done via the standard continuous finite element method and the time discretization via an I-stable rational approximation to the exponential function. It is found that the rate of weak convergence is twice that of strong convergence. Furthermore, in contrast to the parabolic case, higher order schemes in time, such as the Crank-Nicolson scheme, are worthwhile to use if the solution is not very regular. Finally we apply the theory to parabolic equations and detail a weak error estimate for the linearized Cahn-Hilliard-Cook equation as well as comment on the stochastic heat equation
    corecore