1,134 research outputs found

    Deep rest-frame far-UV spectroscopy of the giant Lyman-alpha emitter 'Himiko'

    Get PDF
    We present deep 10h VLT/XSHOOTER spectroscopy for an extraordinarily luminous and extended Lya emitter at z=6.595 referred to as Himiko and first discussed by Ouchi et al. (2009), with the purpose of constraining the mechanisms powering its strong emission. Complementary to the spectrum, we discuss NIR imaging data from the CANDELS survey. We find neither for HeII nor any metal line a significant excess, with 3 sigma upper limits of 6.8, 3.1, and 5.8x10^{-18} erg/s/cm^2 for CIV λ\lambda1549, HeII λ\lambda1640, CIII] λ\lambda1909, respectively, assuming apertures with 200 km/s widths and offset by -250 km/s w.r.t to the peak Lya redshift. These limits provide strong evidence that an AGN is not a major contribution to Himiko's Lya flux. Strong conclusions about the presence of PopIII star-formation or gravitational cooling radiation are not possible based on the obtained HeII upper limit. Our Lya spectrum confirms both spatial extent and flux (8.8+/-0.5x10^{-17} erg/s/cm^2) of previous measurements. In addition, we can unambiguously exclude any remaining chance of it being a lower redshift interloper by significantly detecting a continuum redwards of Lya, while being undetected bluewards

    Long-distance navigation in the wandering desert spider Leucorchestris arenicola: can the slope of the dune surface provide a compass cue?

    Get PDF
    Males of the nocturnal spider Leucorchestris arenicola (Araneae: Sparassidae) wander long distances over seemingly featureless dune surfaces in the Namib Desert searching for females. The spiders live in burrows to which they return after nearly every such excursion. While the outward path of an excursion may be a meandering search, the return path is often a nearly straight line leading towards the burrow. This navigational behaviour resembles that of path integration known from other arthropods, though on a much larger scale (over tens to hundreds of meters). Theoretically, precise navigation by path integration over long distances requires an external compass in order to adjust for inevitable accumulation of navigational errors. As a first step towards identifying any nocturnal compass cues used by the male spiders, a method for detailed 3-D recordings of the spider's paths was developed. The 3-D reconstructions of the paths revealed details about the processes involved in the spiders' nocturnal way of navigation. Analyses of the reconstructed paths suggest that gravity (slope of the dune surface) is an unlikely parameter used in path integration by the L. arenicola spider

    Foreground removal from WMAP 7yr polarization maps using an MLP neural network

    Get PDF
    One of the fundamental problems in extracting the cosmic microwave background signal (CMB) from millimeter/submillimeter observations is the pollution by emission from the Milky Way: synchrotron, free-free, and thermal dust emission. To extract the fundamental cosmological parameters from CMB signal, it is mandatory to minimize this pollution since it will create systematic errors in the CMB power spectra. In previous investigations, it has been demonstrated that the neural network method provide high quality CMB maps from temperature data. Here the analysis is extended to polarization maps. As a concrete example, the WMAP 7-year polarization data, the most reliable determination of the polarization properties of the CMB, has been analysed. The analysis has adopted the frequency maps, noise models, window functions and the foreground models as provided by the WMAP Team, and no auxiliary data is included. Within this framework it is demonstrated that the network can extract the CMB polarization signal with no sign of pollution by the polarized foregrounds. The errors in the derived polarization power spectra are improved compared to the errors derived by the WMAP Team.Comment: Accepted for publication in Astrophysics & Space Scienc

    Power filtration of CMB observational data

    Full text link
    We propose a power filter Gp for linear reconstruction of the CMB signal from observational maps. This Gp filter preserves the power spectrum of the CMB signal in contrast to the Wiener filter which diminishes the power spectrum of the reconstructed CMB signal. We demonstrate how peak statistics and a cluster analysis can be used to estimate the probability of the presence of a CMB signal in observational records. The efficiency of the Gp filter is demonstrated on a toy model of an observational record consisting of a CMB signal and noise in the form of foreground point sources.Comment: 17 pages; 4 figures; submitted to International Journal of Modern Physic
    corecore