9 research outputs found

    Time resolved in situ spectroscopy during formation of the GaP Si 100 heterointerface

    Get PDF
    Though III V Si 100 heterointerfaces are essential for future epitaxial high performance devices, their atomic structure is an open historical question. Benchmarking of transient optical in situ spectroscopy during chemical vapor deposition to chemical analysis by X ray photoelectron spectroscopy enables us to distinguish between formation of surfaces and of the heterointerface. A terrace related optical anisotropy signal evolves during pulsed GaP nucleation on single domain Si 100 surfaces. This dielectric anisotropy agrees well with the one calculated for buried GaP Si 100 interfaces from differently thick GaP epilayers. X ray photoelectron spectroscopy reveals a chemically shifted contribution of the P and Si emission lines, which quantitatively corresponds to one monolayer and establishes simultaneously with the nucleation related optical in situ signal. We attribute that contribution to the existence of Si P bonds at the buried heterointerface. During further pulsing and annealing in phosphorus ambient, dielectric anisotropies known from atomically well ordered GaP 100 surfaces super impose the nucleation related optical in situ spectra. Figure Presente

    Atomic surface structure of MOVPE-prepared GaP(1 1 1)B

    No full text
    Controlling the surface formation of the group-V face of (1 1 1)-oriented III-V semiconductors is crucial for subsequent successful growth of III-V nanowires for electronic and optoelectronic applications. With a view to preparing GaP/Si(1 1 1) virtual substrates, we investigate the atomic structure of the MOVPE (metalorganic vapor phase epitaxy)-prepared GaP(1 1 1)B surface (phosphorus face). We find that upon high-temperature annealing in the H2-based MOVPE process ambience, the surface is phosphorus-depleted, as evidenced by X-ray photoemission spectroscopy (XPS). However, a combination of density functional theory calculations and scanning tunneling microscopy (STM) suggests the formation of a partially H-terminated phosphorus surface, where the STM contrast is due to electrons tunneling from non-terminated dangling bonds of the phosphorus face. Atomic force microscopy (AFM) reveals that a high proportion of the surface is covered by islands, which are confirmed as Ga-rich by Auger electron spectroscopy (AES). We conclude that the STM images of the samples after high-temperature annealing only reflect the flat regions of the partially H-terminated phosphorus face, whereas an increasing coverage with Ga-rich islands, as detected by AFM and AES, forms upon annealing and underlies the higher proportion of Ga in the XPS measurements
    corecore