3,811 research outputs found

    Computational studies on the behaviour of anionic and nonionic surfactants at the SiO2_{2} (silicon dioxide)/water interface

    Full text link
    Molecular dynamics simulations to study the behaviour of anionic (Sodium Dodecylsulfate, SDS) and nonionic (Monooleate of Sorbitan, SPAN80) surfactants close to a SiO2_{2} (silicon dioxide) surface were carried out. Simulations showed that a water layer was first adsorbed on the surface and then the surfactants were attached on that layer. Moreover, it was observed that water behaviour close to the surface influenced the surfactant adsorption since a semi-spherical micelle was formed on the SiO2_{2} surface with SDS molecules whereas a cylindrical micelle was formed with SPAN80 molecules. Adsorption of the micelles was conducted in terms of structural properties (density profiles and angular distributions) and dynamical behaviour (diffusion coefficients) of the systems. Finally, it was also shown that some water molecules moved inside the solid surface and located at specific sites of the solid surface.Comment: 8 pages, 6 fiigure

    Geant4 based simulation of the Water Cherenkov Detectors of the LAGO Project

    Get PDF
    To characterize the signals registered by the different types of water Cherenkov detectors (WCD) used by the Latin American Giant Observatory (LAGO) Project, it is necessary to develop detailed simulations of the detector response to the flux of secondary particles at the detector level. These particles are originated during the interaction of cosmic rays with the atmosphere. In this context, the LAGO project aims to study the high energy component of gamma rays bursts (GRBs) and space weather phenomena by looking for the solar modulation of galactic cosmic rays (GCRs). Focus in this, a complete and complex chain of simulations is being developed that account for geomagnetic effects, atmospheric reaction and detector response at each LAGO site. In this work we shown the first steps of a GEANT4 based simulation for the LAGO WCD, with emphasis on the induced effects of the detector internal diffusive coating.Comment: 5 pages, 4 figures, Proceedings X SILAFAE Medellin-2014. To appear in Nuclear Physics B - Proceedings Supplement

    Cosmic Rays Induced Background Radiation on Board of Commercial Flights

    Get PDF
    The aim of this work is to determine the total integrated flux of cosmic radiation which a commercial aircraft is exposed to along specific flight trajectories. To study the radiation background during a flight and its modulation by effects such as altitude, latitude, exposure time and transient magnetospheric events, we perform simulations based on Magnetocosmics and CORSIKA codes, the former designed to calculate the geomagnetic effects on cosmic rays propagation and the latter allows us to simulate the development of extended air showers in the atmosphere. In this first work, by considering the total flux of cosmic rays from 5 GeV to 1 PeV, we obtained the expected integrated flux of secondary particles on board of a commercial airplane during the Bogot\'a-Buenos Aires trip by point-to-point numerical integration.Comment: 5 pages, 2 figures, Proceedings X SILAFAE Medellin-2014. To appear in Nuclear Physics B - Proceedings Supplement

    Implementing the De-thinning Method for High Energy Cosmic Rays Extensive Air Shower Simulations

    Get PDF
    To simulate the interaction of cosmic rays with the Earth atmosphere requires highly complex computational resources and several statistical techniques have been developed to simplify those calculations. It is common to implement the thinning algorithms to reduce the number of secondary particles by assigning weights to representative particles in the evolution of the cascade. However, since this is a compression method with information loss, it is required to recover the original flux of secondary particles without introduce artificial biases. In this work we present the preliminary results of our version of the de-thinning algorithm for the reconstruction of thinned simulations of extensive air showers initiated by cosmic rays and photons in the energy range 1015<E/eV<101710^{15} < E/\mathrm{eV} < 10^{17}.Comment: 5 pages, 2 figures, 1 table, Proceedings X SILAFAE Medellin-2014. To appear in Nuclear Physics B - Proceedings Supplement

    Plausible families of compact objects with a Non Local Equation of State

    Full text link
    We investigate the plausibility of some models emerging from an algorithm devised to generate a one-parameter family of interior solutions for the Einstein equations. It is explored how their physical variables change as the family-parameter varies. The models studied correspond to anisotropic spherical matter configurations having a non local equation of state. This particular type of equation of state with no causality problems provides, at a given point, the radial pressure not only as a function of the density but as a functional of the enclosed matter distribution. We have found that there are several model-independent tendencies as the parameter increases: the equation of state tends to be stiffer and the total mass becomes half of its external radius. Profiting from the concept of cracking of materials in General Relativity, we obtain that those models become more stable as the family parameter increases
    corecore