7,750 research outputs found
Schwinger Pair Production at Finite Temperature in Scalar QED
In scalar QED we study the Schwinger pair production from an initial ensemble
of charged bosons when an electric field is turned on for a finite period
together with or without a constant magnetic field. The scalar QED Hamiltonian
depends on time through the electric field, which causes the initial ensemble
of bosons to evolve out of equilibrium. Using the Liouville-von Neumann method
for the density operator and quantum states for each momentum mode, we
calculate the Schwinger pair-production rate at finite temperature, which is
the pair-production rate from the vacuum times a thermal factor of the
Bose-Einstein distribution.Comment: RevTex 10 pages, no figure; replaced by the version accepted in Phys.
Rev. D; references correcte
ACCELERATIVE STABILIZATION OF SOLID WASTE IN ANAEROBIC/AEROBIC LAB-SCALE LANDFILL BIOREACTORS
Joint Research on Environmental Science and Technology for the Eart
- …