5,750 research outputs found
On the Mapping of Time-Dependent Densities onto Potentials in Quantum Mechanics
The mapping of time-dependent densities on potentials in quantum mechanics is
critically examined. The issue is of significance ever since Runge and Gross
(Phys. Rev. Lett. 52, 997 (1984)) established the uniqueness of the mapping,
forming a theoretical basis for time-dependent density functional theory. We
argue that besides existence (so called v-representability) and uniqueness
there is an important question of stability and chaos. Studying a 2-level
system we find innocent, almost constant densities that cannot be constructed
from any potential (non-existence). We further show via a Lyapunov analysis
that the mapping of densities on potentials has chaotic regions in this case.
In real space the situation is more subtle. V-representability is formally
assured but the mapping is often chaotic making the actual construction of the
potential almost impossible. The chaotic nature of the mapping, studied for the
first time here, has serious consequences regarding the possibility of using
TDDFT in real-time settings
Combustion chemistry of solid propellants
Several studies are described of the chemistry of solid propellant combustion which employed a fast-scanning optical spectrometer. Expanded abstracts are presented for four of the studies which were previously reported. One study of the ignition of composite propellants yielded data which suggested early ammonium perchlorate decomposition and reaction. The results of a study of the spatial distribution of molecular species in flames from uncatalyzed and copper or lead catalyzed double-based propellants support previously published conclusions concerning the site of action of these metal catalysts. A study of the ammonium-perchlorate-polymeric-fuel-binder reaction in thin films, made by use of infrared absorption spectrometry, yielded a characterization of a rapid condensed-phase reaction which is likely important during the ignition transient and the burning process
Ammonium-perchlorate diffusion flames - A spectrographic investigation
Spectroscopic analyses on ammonium perchlorate diffusion flames with various fuel
The importance of tau leptons for supersymmetry searches at the Tevatron
Supersymmetry is perhaps most effectively probed at the Tevatron through
production and decay of weak gauginos. Most of the analyses of weak gaugino
observables require electrons or muons in the final state. However, it is
possible that the gauginos will decay primarily to tau leptons, thus
complicating the search for supersymmetry. The motivating reasons for high tau
multiplicity final states are discussed in three approaches to supersymmetry
model building: minimal supergravity, gauge mediated supersymmetry breaking,
and more minimal supersymmetry. The concept of ``e/mu/tau candidate'' is
introduced, and an observable with three e/mu/tau candidates is defined in
analog to the trilepton observable. The maximum mass reach for supersymmetry is
then estimated when gaugino decays to tau leptons have full branching fraction.Comment: 9 pages, latex, 2 figures. Presented at the D0 New Phenomena
Workshop, UC Davis, 26-28 March 199
Target dark matter detection rates in models with a well-tempered neutralino
In the post-LEP2 era, and in light of recent measurements of the cosmic
abundance of cold dark matter (CDM) in the universe from WMAP, many
supersymmetric models tend to predict 1. an overabundance of CDM and 2.
pessimistically low rates for direct detection of neutralino dark matter.
However, in models with a ``well-tempered neutralino'', where the neutralino
composition is adjusted to give the measured abundance of CDM, the neutralino
is typically of the mixed bino-wino or mixed bino-higgsino state. Along with
the necessary enhancement to neutralino annihilation rates, these models tend
to give elevated direct detection scattering rates compared to predictions from
SUSY models with universal soft breaking terms. We present neutralino direct
detection cross sections from a variety of models containing a well-tempered
neutralino, and find cross section asymptotes with detectable scattering rates.
These asymptotic rates provide targets that various direct CDM detection
experiments should aim for. In contrast, in models where the neutralino mass
rather than its composition is varied to give the WMAP relic density via either
resonance annihilation or co-annihilation, the neutralino remains essentially
bino-like, and direct detection rates may be below the projected reaches of all
proposed experiments.Comment: 13 pages including 1 EPS figur
Probing Neutralino Resonance Annihilation via Indirect Detection of Dark Matter
The lightest neutralino of R-parity conserving supersymmetric models serves
as a compelling candidate to account for the presence of cold dark matter in
the universe. In the minimal supergravity (mSUGRA) model, a relic density can
be found in accord with recent WMAP data for large values of the parameter
, where neutralino annihilation in the early universe occurs via the
broad s-channel resonance of the pseudoscalar Higgs boson . We map out rates
for indirect detection of neutralinos via 1. detection of neutrinos arising
from neutralino annihilation in the core of the earth or sun and 2. detection
of gamma rays, antiprotons and positrons arising from neutralino annihilation
in the galactic halo. If indeed -resonance annihilation is the main sink for
neutralinos in the early universe, then signals may occur in the gamma ray,
antiproton and positron channels, while a signal in the neutrino channel would
likely be absent. This is in contrast to the hyperbolic branch/focus point
(HB/FP) region where {\it all} indirect detection signals are likely to occur,
and also in contrast to the stau co-annihilation region, where {\it none} of
the indirect signals are likely to occur.Comment: 12 pages including 4 eps figure
The Reach of the Fermilab Tevatron and CERN LHC for Gaugino Mediated SUSY Breaking Models
In supersymmetric models with gaugino mediated SUSY breaking (inoMSB), it is
assumed that SUSY breaking on a hidden brane is communicated to the visible
brane via gauge superfields which propagate in the bulk. This leads to GUT
models where the common gaugino mass is the only soft SUSY breaking
term to receive contributions at tree level. To obtain a viable phenomenology,
it is assumed that the gaugino mass is induced at some scale beyond the
GUT scale, and that additional renormalization group running takes place
between and as in a SUSY GUT. We assume an SU(5) SUSY GUT above
the GUT scale, and compute the SUSY particle spectrum expected in models with
inoMSB. We use the Monte Carlo program ISAJET to simulate signals within the
inoMSB model, and compute the SUSY reach including cuts and triggers approriate
to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the
Tevatron collider in the trilepton channel. %either with or without %identified
tau leptons. At the CERN LHC, values of (1160) GeV can be probed
with 10 (100) fb of integrated luminosity, corresponding to a reach in
terms of of 2150 (2500) GeV. The inoMSB model and mSUGRA can likely
only be differentiated at a linear collider with sufficient energy to
produce sleptons and charginos.Comment: 17 page revtex file with 9 PS figure
WMAPing the Universe: Supersymmetry, Dark Matter, Dark Energy, Proton Decay and Collider Physics
In this review we discuss constraints on minimal supersymmetric models of
particle physics implied by the recent astrophysical observations of WMAP.
Although the prospects of detecting supersymmetry increase and 90 percent of
the available MSSM parameter space can safely be reached by the sensitivity of
future colliders, nevertheless we pay particular emphasis on discussing regions
of the appropriate phase diagrams, which -if realized - would imply that
detection of supersymmetry, at least in the context of minimal models, could be
out of colliders reach. We also discuss the importance of a precise
determination of the radiative corrections to the muon anomalous magnetic
moment, both theoretically and experimentally. Finally, we briefly commend upon
recent evidence, supported by observations, on a dark energy component of the
Universe, of as yet unknown origin, covering 73 percent of its energy content.Comment: Review paper, 69 pages Latex, 35 eps figures incorporate
Linear Collider Capabilities for Supersymmetry in Dark Matter Allowed Regions of the mSUGRA Model
Recent comparisons of minimal supergravity (mSUGRA) model predictions with
WMAP measurements of the neutralino relic density point to preferred regions of
model parameter space. We investigate the reach of linear colliders (LC) with
and 1 TeV for SUSY in the framework of the mSUGRA model. We find
that LCs can cover the entire stau co-annihilation region provided \tan\beta
\alt 30. In the hyperbolic branch/focus point (HB/FP) region of parameter
space, specialized cuts are suggested to increase the reach in this important
``dark matter allowed'' area. In the case of the HB/FP region, the reach of a
LC extends well past the reach of the CERN LHC. We examine a case study in the
HB/FP region, and show that the MSSM parameters and can be
sufficiently well-measured to demonstrate that one would indeed be in the HB/FP
region, where the lightest chargino and neutralino have a substantial higgsino
component.Comment: 29 pages, 15 EPS figures; updated version slightly modified to
conform with published versio
Exploring the BWCA (Bino-Wino Co-Annihilation) Scenario for Neutralino Dark Matter
In supersymmetric models with non-universal gaugino masses, it is possible to
have opposite-sign SU(2) and U(1) gaugino mass terms. In these models, the
gaugino eigenstates experience little mixing so that the lightest SUSY particle
remains either pure bino or pure wino. The neutralino relic density can only be
brought into accord with the WMAP measured value when bino-wino co-annihilation
(BWCA) acts to enhance the dark matter annihilation rate. We map out parameter
space regions and mass spectra which are characteristic of the BWCA scenario.
Direct and indirect dark matter detection rates are shown to be typically very
low. At collider experiments, the BWCA scenario is typified by a small mass gap
m_{\tilde Z_2}-m_{\tilde Z_1} ~ 20-80 GeV, so that tree level two body decays
of \tilde Z_2 are not allowed. However, in this case the second lightest
neutralino has an enhanced loop decay branching fraction to photons. While the
photonic neutralino decay signature looks difficult to extract at the Fermilab
Tevatron, it should lead to distinctive events at the CERN LHC and at a linear
e^+e^- collider.Comment: 44 pages, 21 figure
- …