5,750 research outputs found

    On the Mapping of Time-Dependent Densities onto Potentials in Quantum Mechanics

    Full text link
    The mapping of time-dependent densities on potentials in quantum mechanics is critically examined. The issue is of significance ever since Runge and Gross (Phys. Rev. Lett. 52, 997 (1984)) established the uniqueness of the mapping, forming a theoretical basis for time-dependent density functional theory. We argue that besides existence (so called v-representability) and uniqueness there is an important question of stability and chaos. Studying a 2-level system we find innocent, almost constant densities that cannot be constructed from any potential (non-existence). We further show via a Lyapunov analysis that the mapping of densities on potentials has chaotic regions in this case. In real space the situation is more subtle. V-representability is formally assured but the mapping is often chaotic making the actual construction of the potential almost impossible. The chaotic nature of the mapping, studied for the first time here, has serious consequences regarding the possibility of using TDDFT in real-time settings

    Combustion chemistry of solid propellants

    Get PDF
    Several studies are described of the chemistry of solid propellant combustion which employed a fast-scanning optical spectrometer. Expanded abstracts are presented for four of the studies which were previously reported. One study of the ignition of composite propellants yielded data which suggested early ammonium perchlorate decomposition and reaction. The results of a study of the spatial distribution of molecular species in flames from uncatalyzed and copper or lead catalyzed double-based propellants support previously published conclusions concerning the site of action of these metal catalysts. A study of the ammonium-perchlorate-polymeric-fuel-binder reaction in thin films, made by use of infrared absorption spectrometry, yielded a characterization of a rapid condensed-phase reaction which is likely important during the ignition transient and the burning process

    Ammonium-perchlorate diffusion flames - A spectrographic investigation

    Get PDF
    Spectroscopic analyses on ammonium perchlorate diffusion flames with various fuel

    The importance of tau leptons for supersymmetry searches at the Tevatron

    Get PDF
    Supersymmetry is perhaps most effectively probed at the Tevatron through production and decay of weak gauginos. Most of the analyses of weak gaugino observables require electrons or muons in the final state. However, it is possible that the gauginos will decay primarily to tau leptons, thus complicating the search for supersymmetry. The motivating reasons for high tau multiplicity final states are discussed in three approaches to supersymmetry model building: minimal supergravity, gauge mediated supersymmetry breaking, and more minimal supersymmetry. The concept of ``e/mu/tau candidate'' is introduced, and an observable with three e/mu/tau candidates is defined in analog to the trilepton observable. The maximum mass reach for supersymmetry is then estimated when gaugino decays to tau leptons have full branching fraction.Comment: 9 pages, latex, 2 figures. Presented at the D0 New Phenomena Workshop, UC Davis, 26-28 March 199

    Target dark matter detection rates in models with a well-tempered neutralino

    Get PDF
    In the post-LEP2 era, and in light of recent measurements of the cosmic abundance of cold dark matter (CDM) in the universe from WMAP, many supersymmetric models tend to predict 1. an overabundance of CDM and 2. pessimistically low rates for direct detection of neutralino dark matter. However, in models with a ``well-tempered neutralino'', where the neutralino composition is adjusted to give the measured abundance of CDM, the neutralino is typically of the mixed bino-wino or mixed bino-higgsino state. Along with the necessary enhancement to neutralino annihilation rates, these models tend to give elevated direct detection scattering rates compared to predictions from SUSY models with universal soft breaking terms. We present neutralino direct detection cross sections from a variety of models containing a well-tempered neutralino, and find cross section asymptotes with detectable scattering rates. These asymptotic rates provide targets that various direct CDM detection experiments should aim for. In contrast, in models where the neutralino mass rather than its composition is varied to give the WMAP relic density via either resonance annihilation or co-annihilation, the neutralino remains essentially bino-like, and direct detection rates may be below the projected reaches of all proposed experiments.Comment: 13 pages including 1 EPS figur

    Probing Neutralino Resonance Annihilation via Indirect Detection of Dark Matter

    Full text link
    The lightest neutralino of R-parity conserving supersymmetric models serves as a compelling candidate to account for the presence of cold dark matter in the universe. In the minimal supergravity (mSUGRA) model, a relic density can be found in accord with recent WMAP data for large values of the parameter tanβ\tan\beta, where neutralino annihilation in the early universe occurs via the broad s-channel resonance of the pseudoscalar Higgs boson AA. We map out rates for indirect detection of neutralinos via 1. detection of neutrinos arising from neutralino annihilation in the core of the earth or sun and 2. detection of gamma rays, antiprotons and positrons arising from neutralino annihilation in the galactic halo. If indeed AA-resonance annihilation is the main sink for neutralinos in the early universe, then signals may occur in the gamma ray, antiproton and positron channels, while a signal in the neutrino channel would likely be absent. This is in contrast to the hyperbolic branch/focus point (HB/FP) region where {\it all} indirect detection signals are likely to occur, and also in contrast to the stau co-annihilation region, where {\it none} of the indirect signals are likely to occur.Comment: 12 pages including 4 eps figure

    The Reach of the Fermilab Tevatron and CERN LHC for Gaugino Mediated SUSY Breaking Models

    Get PDF
    In supersymmetric models with gaugino mediated SUSY breaking (inoMSB), it is assumed that SUSY breaking on a hidden brane is communicated to the visible brane via gauge superfields which propagate in the bulk. This leads to GUT models where the common gaugino mass m1/2m_{1/2} is the only soft SUSY breaking term to receive contributions at tree level. To obtain a viable phenomenology, it is assumed that the gaugino mass is induced at some scale McM_c beyond the GUT scale, and that additional renormalization group running takes place between McM_c and MGUTM_{GUT} as in a SUSY GUT. We assume an SU(5) SUSY GUT above the GUT scale, and compute the SUSY particle spectrum expected in models with inoMSB. We use the Monte Carlo program ISAJET to simulate signals within the inoMSB model, and compute the SUSY reach including cuts and triggers approriate to Fermilab Tevatron and CERN LHC experiments. We find no reach for SUSY by the Tevatron collider in the trilepton channel. %either with or without %identified tau leptons. At the CERN LHC, values of m1/2=1000m_{1/2}=1000 (1160) GeV can be probed with 10 (100) fb1^{-1} of integrated luminosity, corresponding to a reach in terms of mtgm_{\tg} of 2150 (2500) GeV. The inoMSB model and mSUGRA can likely only be differentiated at a linear e+ee^+e^- collider with sufficient energy to produce sleptons and charginos.Comment: 17 page revtex file with 9 PS figure

    WMAPing the Universe: Supersymmetry, Dark Matter, Dark Energy, Proton Decay and Collider Physics

    Full text link
    In this review we discuss constraints on minimal supersymmetric models of particle physics implied by the recent astrophysical observations of WMAP. Although the prospects of detecting supersymmetry increase and 90 percent of the available MSSM parameter space can safely be reached by the sensitivity of future colliders, nevertheless we pay particular emphasis on discussing regions of the appropriate phase diagrams, which -if realized - would imply that detection of supersymmetry, at least in the context of minimal models, could be out of colliders reach. We also discuss the importance of a precise determination of the radiative corrections to the muon anomalous magnetic moment, both theoretically and experimentally. Finally, we briefly commend upon recent evidence, supported by observations, on a dark energy component of the Universe, of as yet unknown origin, covering 73 percent of its energy content.Comment: Review paper, 69 pages Latex, 35 eps figures incorporate

    Linear Collider Capabilities for Supersymmetry in Dark Matter Allowed Regions of the mSUGRA Model

    Full text link
    Recent comparisons of minimal supergravity (mSUGRA) model predictions with WMAP measurements of the neutralino relic density point to preferred regions of model parameter space. We investigate the reach of linear colliders (LC) with s=0.5\sqrt{s}=0.5 and 1 TeV for SUSY in the framework of the mSUGRA model. We find that LCs can cover the entire stau co-annihilation region provided \tan\beta \alt 30. In the hyperbolic branch/focus point (HB/FP) region of parameter space, specialized cuts are suggested to increase the reach in this important ``dark matter allowed'' area. In the case of the HB/FP region, the reach of a LC extends well past the reach of the CERN LHC. We examine a case study in the HB/FP region, and show that the MSSM parameters μ\mu and M2M_2 can be sufficiently well-measured to demonstrate that one would indeed be in the HB/FP region, where the lightest chargino and neutralino have a substantial higgsino component.Comment: 29 pages, 15 EPS figures; updated version slightly modified to conform with published versio

    Exploring the BWCA (Bino-Wino Co-Annihilation) Scenario for Neutralino Dark Matter

    Get PDF
    In supersymmetric models with non-universal gaugino masses, it is possible to have opposite-sign SU(2) and U(1) gaugino mass terms. In these models, the gaugino eigenstates experience little mixing so that the lightest SUSY particle remains either pure bino or pure wino. The neutralino relic density can only be brought into accord with the WMAP measured value when bino-wino co-annihilation (BWCA) acts to enhance the dark matter annihilation rate. We map out parameter space regions and mass spectra which are characteristic of the BWCA scenario. Direct and indirect dark matter detection rates are shown to be typically very low. At collider experiments, the BWCA scenario is typified by a small mass gap m_{\tilde Z_2}-m_{\tilde Z_1} ~ 20-80 GeV, so that tree level two body decays of \tilde Z_2 are not allowed. However, in this case the second lightest neutralino has an enhanced loop decay branching fraction to photons. While the photonic neutralino decay signature looks difficult to extract at the Fermilab Tevatron, it should lead to distinctive events at the CERN LHC and at a linear e^+e^- collider.Comment: 44 pages, 21 figure
    corecore