54 research outputs found
PEN experiment: a precise measurement of the pi+ -> e+ nu decay branching fraction
A new measurement of , the decay
branching ratio, is currently under way at the Paul Scherrer Institute. The
present experimental result on constitutes the most accurate test
of lepton universality available. The accuracy, however, still lags behind the
theoretical precision by over an order of magnitude. Because of the large
helicity suppression of the decay, its branching ratio is
susceptible to significant contributions from new physics, making this decay a
particularly suitable subject of study.Comment: 4 pages, 3 figures, talk given at the Tenth Conference on the
Intersections of Particle and Nuclear Physics (CIPANP 2009), La Jolla/San
Diego, CA, 26-31 May 2009; to appear in Proceedings to be published by the
American Institute of Physic
PEN: a low energy test of lepton universality
Allowed charged meson decays are characterized by simple dynamics, few
available decay channels, mainly into leptons, and extremely well controlled
radiative and loop corrections. In that sense, pion decays represent a
veritable triumph of the standard model (SM) of elementary particles and
interactions. This relative theoretical simplicity makes charged pion decays a
sensitive means for testing the underlying symmetries and the universality of
weak fermion couplings, as well as for studying pion structure and chiral
dynamics. Even after considerable recent improvements, experimental precision
is lagging far behind that of the theoretical description for pion decays. We
review the current state of experimental study of the pion electronic decay
, or , where the
indicates inclusion and explicit treatment of radiative decay events. We
briefly review the limits on non-SM processes arising from the present level of
experimental precision in decays. Focusing on the PEN
experiment at the Paul Scherrer Institute (PSI), Switzerland, we examine the
prospects for further improvement in the near term.Comment: 11 pages, 5 figures; paper presented at the XIII International
Conference on Heavy Quarks and Leptons, 22-27 May 2016, Blacksburg, Virginia,
US
Precise Measurement of the Pi+ -> Pi0 e+ nu Branching Ratio
Using a large acceptance calorimeter and a stopped pion beam we have made a
precise measurement of the rare Pi+ -> Pi0 e+ Nu,(pi_beta) decay branching
ratio. We have evaluated the branching ratio by normalizing the number of
observed pi_beta decays to the number of observed Pi+ -> e+ Nu, (pi_{e2})
decays. We find the value of Gamma(Pi+ -> Pi0 e+ Nu)/Gamma(total) = [1.036 +/-
0.004(stat.) +/- 0.004(syst.) +/- 0.003(pi_{e2})] x 10^{-8}$, where the first
uncertainty is statistical, the second systematic, and the third is the pi_{e2}
branching ratio uncertainty. Our result agrees well with the Standard Model
prediction.Comment: 4 pages, 5 figures, 1 table, revtex4; changed content; updated
analysi
Design, Commissioning and Performance of the PIBETA Detector at PSI
We describe the design, construction and performance of the PIBETA detector
built for the precise measurement of the branching ratio of pion beta decay,
pi+ -> pi0 e+ nu, at the Paul Scherrer Institute. The central part of the
detector is a 240-module spherical pure CsI calorimeter covering 3*pi sr solid
angle. The calorimeter is supplemented with an active collimator/beam degrader
system, an active segmented plastic target, a pair of low-mass cylindrical wire
chambers and a 20-element cylindrical plastic scintillator hodoscope. The whole
detector system is housed inside a temperature-controlled lead brick enclosure
which in turn is lined with cosmic muon plastic veto counters. Commissioning
and calibration data were taken during two three-month beam periods in
1999/2000 with pi+ stopping rates between 1.3*E3 pi+/s and 1.3*E6 pi+/s. We
examine the timing, energy and angular detector resolution for photons,
positrons and protons in the energy range of 5-150 MeV, as well as the response
of the detector to cosmic muons. We illustrate the detector signatures for the
assorted rare pion and muon decays and their associated backgrounds.Comment: 117 pages, 48 Postscript figures, 5 tables, Elsevier LaTeX, submitted
to Nucl. Instrum. Meth.
Precise Measurement of pi+ -> e+ nu Branching Ratio
The PEN Collaboration is conducting a new measurement of the pi+ -> e+ nu
branching ratio at the Paul Scherrer Institute, with the goal uncertainty of
delta B/B(pie2)=5E-4 or lower. At present, the combined accuracy of all
published pie2 decay measurements lags behind the theoretical calculation by a
factor of 40. In this contribution we report on the PEN detector configuration
and its performance during two development runs done in 2007 and 2008.Comment: pdflatex, 11 pages, 5 figures, to be published in "Progress in
High-Energy Physics and Nuclear Safety", NATO Science for Peace Series: B -
Physics and Biophysic
Precise Measurement of the Pion Axial Form Factor in the Pi+ -> e+ nu gamma Decay
We have studied radiative pion decays Pi+ -> e+ nu gamma in three broad
kinematic regions using the PIBETA detector and a stopped pion beam. Based on
Dalitz distributions of 42,209 events we have evaluated absolute Pi -> e nu
gamma branching ratios in the three regions. Minimum chi^2 fits to the integral
and differential (E(e+),E(gamma)) distributions result in the axial-to-vector
weak form factor ratio of gamma = F_A/F_V = 0.443(15),or F_A = 0.0115(4) with
F_V = 0.0259. However, deviations from Standard Model predictions in the
high-E(gamma)/low-E(e+) kinematic region indicate the need for further
theoretical and experimental work.Comment: 5 pages, 4 figures, 1 table, revtex
- …