3 research outputs found

    Hydrophobicity and Helicity Regulate the Antifungal Activity of 14-Helical β‑Peptides

    No full text
    <i>Candida albicans</i> is one of the most prevalent fungal pathogens, causing both mucosal candidiasis and invasive candidemia. Antimicrobial peptides (AMPs), part of the human innate immune system, have been shown to exhibit antifungal activity but have not been effective as pharmaceuticals because of low activity and selectivity in physiologically relevant environments. Nevertheless, studies on α-peptide AMPs have revealed key features that can be designed into more stable structures, such as the 14-helix of β-peptide-based oligomers. Here, we report on the ways in which two of those features, hydrophobicity and helicity, govern the activity and selectivity of 14-helical β-peptides against <i>C. albicans</i> and human red blood cells. Our results reveal both antifungal activity and hemolysis to correlate to hydrophobicity, with intermediate levels of hydrophobicity leading to high antifungal activity and high selectivity toward <i>C. albicans</i>. Helical structure-forming propensity further influenced this window of selective antifungal activity, with more stable helical structures eliciting specificity for <i>C. albicans</i> over a broader range of hydrophobicity. Our findings also reveal cooperativity between hydrophobicity and helicity in regulating antifungal activity and specificity. The results of this study provide critical insight into the ways in which hydrophobicity and helicity govern the activity and specificity of AMPs and identify criteria that may be useful for the design of potent and selective antifungal agents

    Incorporation of β‑Amino Acids Enhances the Antifungal Activity and Selectivity of the Helical Antimicrobial Peptide Aurein 1.2

    No full text
    Antimicrobial peptides (AMPs) are attractive antifungal drug candidates because they kill microbes <i>via</i> membrane disruption and are thus unlikely to provoke development of resistance. Low selectivity for fungal vs human cells and instability in physiological environments have limited the development of AMPs as therapeutics, but peptidomimetic AMPs can overcome these obstacles and also provide useful insight into AMP structure–function relationships. Here, we describe antifungal peptidomimetic α/β-peptides templated on the natural α-peptidic AMP aurein 1.2. These α/β-aurein analogs fold into <i>i</i> → <i>i</i> + 4 H-bonded helices that present arrays of side chain functionality in a manner virtually identical to that of aurein 1.2. By varying charge, hydrophobicity, conformational stability, and α/β-amino acid organization, we designed active and selective α/β-peptide aurein analogs that exhibit minimum inhibitory concentrations (MIC) against the opportunistic pathogen <i>Candida albicans</i> that are 4-fold lower than that of aurein 1.2 and elicit less than 5% hemolysis at the MIC. These α/β-aurein analogs are promising candidates for development as antifungal therapeutics and as tools to elucidate mechanisms of AMP activity and specificity

    Intraluminal Release of an Antifungal β‑Peptide Enhances the Antifungal and Anti-Biofilm Activities of Multilayer-Coated Catheters in a Rat Model of Venous Catheter Infection

    No full text
    Candida albicans is the most prevalent cause of hospital-acquired fungal infections and forms biofilms on indwelling medical devices that are notoriously difficult to treat or remove. We recently demonstrated that the colonization of C. albicans on the surfaces of catheter tube segments can be reduced in vitro by coating them with polyelectrolyte multilayers (PEMs) that release a potent antifungal β-peptide. Here, we report on the impact of polymer structure and film composition on both the inherent and β-peptide-mediated ability of PEM-coated catheters to prevent or reduce the formation of C. albicans biofilms in vitro and in vivo using a rat model of central venous catheter infection. Coatings fabricated using polysaccharide-based components [hyaluronic acid (HA) and chitosan (CH)] and coatings fabricated using polypeptide-based components [poly-l-lysine (PLL) and poly-l-glutamic acid (PGA)] both served as reservoirs for the loading and sustained release of β-peptide, but differed substantially in loading and release profiles and in their inherent antifungal properties (e.g., the ability to prevent colonization and biofilm growth in the absence of β-peptide). In particular, CH/HA films exhibited inherent antifungal and antibiofilm behaviors in vitro and in vivo, a result we attribute to the incorporation of CH, a weak polycation demonstrated to exhibit antimicrobial properties in other contexts. The antifungal properties of both types of films were improved substantially when β-peptide was incorporated. Catheter segments coated with β-peptide-loaded CH/HA and PLL/PGA films were both strongly antifungal against planktonic C. albicans and the formation of surface-associated biofilms in vitro and in vivo. Our results demonstrate that PEM coatings provide a useful platform for the design of new antifungal materials, and suggest opportunities to design multifunctional or dual-action platforms to prevent or reduce the severity of fungal infections in applied biomedical contexts or other areas in which fungal biofilms are endemic
    corecore