2,748 research outputs found

    Holographic interacting dark energy in the braneworld cosmology

    Full text link
    We investigate a model of brane cosmology to find a unified description of the radiation-matter-dark energy universe. It is of the interacting holographic dark energy with a bulk-holographic matter χ\chi. This is a five-dimensional cold dark matter, which plays a role of radiation on the brane. Using the effective equations of state ωΛeff\omega^{\rm eff}_{\rm \Lambda} instead of the native equations of state ωΛ\omega_{\rm \Lambda}, we show that this model cannot accommodate any transition from the dark energy with ωΛeff≥−1\omega^{\rm eff}_{\rm \Lambda}\ge-1 to the phantom regime ωΛeff<−1\omega^{\rm eff}_{\rm \Lambda}<-1. Furthermore, the case of interaction between cold dark matter and five dimensional cold dark matter is considered for completeness. Here we find that the redshift of matter-radiation equality zeqz_{\rm eq} is the same order as zeqob=2.4×104Ωmh2z^{\rm ob}_{\rm eq}=2.4\times10^{4} \Omega_{\rm m}h^2. Finally, we obtain a general decay rate Γ\Gamma which is suitable for describing all interactions including the interaction between holographic dark energy and cold dark matter.Comment: 17 pages, 4 figure

    Phase transitions for the Lifshitz black holes

    Full text link
    We study possibility of phase transitions between Lifshitz black holes and other configurations by using free energies explicitly. A phase transition between Lifshitz soliton and Lifshitz black hole might not occur in three dimensions. We find that a phase transition between Lifshitz and BTZ black holes unlikely occurs because they have different asymptotes. Similarly, we point out that any phase transition between Lifshitz and black branes unlikely occurs in four dimensions since they have different asymptotes. This is consistent with a necessary condition for taking a phase transition in the gravitational system, which requires the same asymptote.Comment: 19 pages, 7 figures, a revised version to appear in EPJ

    Thermodynamics of an Evaporating Schwarzschild Black Hole in Noncommutative Space

    Get PDF
    We investigate the effects of space noncommutativity and the generalized uncertainty principle on the thermodynamics of a radiating Schwarzschild black hole. We show that evaporation process is in such a way that black hole reaches to a maximum temperature before its final stage of evolution and then cools down to a nonsingular remnant with zero temperature and entropy. We compare our results with more reliable results of string theory. This comparison Shows that GUP and space noncommutativity are similar concepts at least from view point of black hole thermodynamics.Comment: 15 Pages, 2 Figures, revised and refernces adde

    Electronic Quantum Monte Carlo Calculations of Atomic Forces, Vibrations, and Anharmonicities

    Get PDF
    Atomic forces are calculated for first-row monohydrides and carbon monoxide within electronic quantum Monte Carlo (QMC). Accurate and efficient forces are achieved by using an improved method for moving variational parameters in variational QMC. Newton's method with singular value decomposition (SVD) is combined with steepest descent (SD) updates along directions rejected by the SVD, after initial SD steps. Dissociation energies in variational and diffusion QMC agree well with experiment. The atomic forces agree quantitatively with potential energy surfaces, demonstrating the accuracy of this force procedure. The harmonic vibrational frequencies and anharmonicity constants, derived from the QMC energies and atomic forces, also agree well with experimental values.Comment: 6 pages, 2 figures; updated conten

    Quintessence and Brane world scenarios

    Get PDF
    We discuss the possibility of quintessence in the dilatonic domain walls including the Randall-Sundrum brane world. We obtain the zero mode effective action for gravitating objects in the dilatonic domain wall. First we consider the four dimensional (4D) gravity and the Brans-Dicke graviscalar with a potential. This can be further rewritten as a minimally coupled scalar with the Liouville-type potential in the Einstein frame. However this model fails to induce the quintessence on the dilatonic domain wall because the potential is negative. Second we consider the 4D gravity with the dilaton. In this case we find also a negative potential. Any negative potential gives us negative energy density and positive pressure, which does not lead to an accelerating universe. Consequently it turns out that the zero mode approach of the dilatonic domain wall cannot accommodate the quintessence in cosmology.Comment: 10 pages, some ambiguity in mathematical expressions corrected and references adde

    Dilaton gravity approach to three dimensional Lifshitz black hole

    Full text link
    The z=3 Lifshitz black hole is an exact black hole solution to the new massive gravity in three dimensions. In order to understand this black hole clearly, we perform a dimensional reduction to two dimensional dilaton gravity by utilizing the circular symmetry. Considering the linear dilaton, we find the same Lifshitz black hole in two dimensions. This implies that all thermodynamic quantities of the z=3 Lifshitz black hole could be obtained from its corresponding black hole in two dimensions. As a result, we derive the temperature, mass, heat capacity, Bekesnstein-Hawking entropy, and free energy.Comment: 13 pages, 1 figure, version to appear in EPJ

    Regular black hole in three dimensions

    Full text link
    We find a new black hole in three dimensional anti-de Sitter space by introducing an anisotropic perfect fluid inspired by the noncommutative black hole. This is a regular black hole with two horizons. We compare thermodynamics of this black hole with that of non-rotating BTZ black hole. The first-law of thermodynamics is not compatible with the Bekenstein-Hawking entropy.Comment: 15 pages, 16 figures, 3D noncommutative black hole included as Sec 4, a version to appear in EPJ

    Nonpropagation of massive mode on AdS2 in topologically massive gravity

    Full text link
    Making use of Achucarro-Ortiz (AO) type of dimensional reduction, we study the topologically massive gravity with a negative cosmological constant on AdS2 spacetimes. For a constant dilaton, this two-dimensional model also admits three AdS2 vacuum solutions, which are related to two AdS3 and warped AdS3 backgrounds with an identification upon uplifting three dimensions. We carry out the perturbation analysis around these backgrounds to find what is a physically propagating field. However, it turns out that there is no propagating massive mode on AdS2 background, in contrast to the Kaluza-Klein (KK) type of dimensional reduction. We note that two dimensionally reduced actions are different and thus, the non-equivalence of their on-shell amplitudes is obtained.Comment: 19 pages, version to appear in EPJ

    Cosmic holographic bounds with UV and IR cutoffs

    Full text link
    We introduce the cosmic holographic bounds with two UV and IR cutoff scales, to deal with both the inflationary universe in the past and dark energy in the future. To describe quantum fluctuations of inflation on sub-horizon scales, we use the Bekenstein-Hawking energy bound. However, it is not justified that the D-bound is satisfied with the coarse-grained entropy. The Hubble bounds are introduced for classical fluctuations of inflation on super-horizon scales. It turns out that the Hubble entropy bound is satisfied with the entanglement entropy and the Hubble temperature bound leads to a condition for the slow-roll inflation. In order to describe the dark energy, we introduce the holographic energy density which is the one saturating the Bekenstein-Hawking energy bound for a weakly gravitating system. Here the UV (IR) cutoff is given by the Planck scale (future event horizon), respectively. As a result, we find the close connection between quantum and classical fluctuations of inflation, and dark energy.Comment: 15page
    • …
    corecore